Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 347: 123717, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38447656

ABSTRACT

The inclusion of hazardous substances in the formulation of plastics raises significant concerns, particularly, if those substances are released as primary leachates during plastic degradation and/or fragmentation. In this sense, the production of degradable plastics holding deleterious additives can increase the release of harmful substances into the environment. Additionally, the effects of primary leachates of "eco-friendly" materials remain unexplored. To address this, we performed exposures to primary leachates of alternative polymers, and commercial bags to verify possible responses associated with endocrine disruption and/or activation of the detoxification pathway in larvae of the marine fish model Cyprinodon variegatus. The chemical characterization evidenced a great number of additives in the formulation of the materials analyzed in this study. Those include, except for the PLA sample, relevant levels of the hazardous phthalates DEHP and DiBP. Regarding the effects on marine fish larvae, exposure to leachates from alternative polymers (10 g/L) PHB and PHBV produced remarkable mortality (100%). While the exposure to bag leachates of all tested materials (1 and 10 g/L) produced alterations in biomarkers for steroidogenic and detoxification pathways. To a lesser extent (10 g/L), three materials produced significant alterations in estrogenic biomarkers (Home-compostable bag 1, LDPE and Recycled PE bags). Although the alterations in gene expression were not directly correlated to the amount of DEHP or DiBP, we can conclude that primary leachates of "eco-friendly" bags are harmful to marine vertebrates.


Subject(s)
Diethylhexyl Phthalate , Water Pollutants, Chemical , Animals , Plastics/toxicity , Plastics/chemistry , Larva , Water Pollutants, Chemical/analysis , Fishes , Polymers , Biomarkers
2.
Environ Pollut ; 300: 118936, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35124124

ABSTRACT

The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 µg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.


Subject(s)
Endocrine Disruptors , Killifishes , Animals , Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Female , Male , Phenols , Proteome , Proteomics
4.
Chemosphere ; 227: 580-588, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31009864

ABSTRACT

Copper ions (Cu) are essential to life maintenance, nonetheless, elevated concentrations can be hazardous. Acute and sub-chronic toxic effects of this metal are well known and are usually related to enzymatic inhibition, elevated ROS production and dysfunction of energy metabolism. Despite that, chronic studies are extremely rare. Therefore, the aim of this study was to assess the effects of chronic exposure to 5, 9 and 20 µg/L Cu (28 ad 345 days) on the energy metabolism and survival of the killifish Poecilia vivipara. To accomplish that, we evaluated the activity of enzymes related to aerobic (pyruvate kinase (PK); citrate synthase (CS)) and anaerobic metabolism (lactate dehydrogenase (LDH)) in whole-body (28 days) or in gills, liver and muscle (345 days) of exposed fish. Additionally, whole-body oxygen consumption was evaluated in fish exposed for 28 days and hepatic and muscular expression of genes involved in mitochondrial metabolism (cox I, II and III and atp5a1) was assessed in animals exposed for 345 days. Finally, final survival was evaluated. Following 28 days, Cu did not affect survival neither enzyme activities. However, increased whole-body oxygen consumption was observed in comparison to control condition. After 345 days, 76.8%, 63.9%, 60.9% and 0% survival were observed for control, 5, 9 and 20 µg/L groups, respectively. Animals exposed to 5 and 9 µg/L had a significant reduction in branchial and muscular LDH activity and in hepatic PK activity. Also, exposure to 9 µg/L significantly increased hepatic CS activity. For gene expression, Cu down-regulated muscular cox II (9 µg/L) and III (5 and 9 µg/L), and up-regulated hepatic atp5a1 (9 µg/L). Findings reported in the present study indicate that chronic exposure to Cu induces tissue-specific responses in key aspects of the energetic metabolism. In gills and muscle, Cu leads to reduced energy production through inhibition of anaerobic pathways and mitochondrial respiratory chain. This effect is paralleled by an increased ATP consumption in the liver, characterized by the augmented CS activity and atp5a1 expression. Finally, reduced PK activity indicate that oxidative stress may be involved with the observed outcomes.


Subject(s)
Copper/toxicity , Energy Metabolism/drug effects , Water Pollutants, Chemical/toxicity , Animals , Gills/drug effects , Gills/metabolism , L-Lactate Dehydrogenase/metabolism , Liver/drug effects , Liver/metabolism , Muscles/drug effects , Muscles/metabolism , Oxidative Stress/drug effects , Poecilia/metabolism , Pyruvate Kinase/metabolism , Toxicity Tests, Chronic
5.
Chemosphere ; 223: 257-262, 2019 May.
Article in English | MEDLINE | ID: mdl-30784733

ABSTRACT

The involvement of transporting proteins on copper (Cu) bioaccumulation was evaluated in the killifish Poecilia vivipara chronically exposed to environmentally relevant concentrations of waterborne Cu. Fish (<24 h-old) were maintained under control condition or exposed to different waterborne Cu concentrations (5, 9 and 20 µg/L) for 28 and 345 days in saltwater. Following exposure periods, Cu accumulation and the expression of genes encoding for the high affinity Cu-transporter (ctr1) and the P-type Cu-ATPase (atp7b) were evaluated. Whole-body metal accumulation and gene expression were evaluated in fish exposed to 28 days. Similarly, in fish exposed to 345 days, liver, gills and gut were also evaluated. No fish survival was observed after exposure to 20 µg/L for 345 days. Whole-body Cu accumulation was significantly higher in fish exposed to 20 µg/L Cu for 28 days and in fish exposed to 9 µg/L for 345 days in comparison to control animals. Similarly, tissue Cu accumulation was significantly higher in fish exposed to 9 µg/L for 345 days in comparison to control animal. However, no significant accumulation was observed in fish muscle. Following exposure for 28 days, whole-body ctr1 expression was slightly induced in fish exposed to 9 µg/L. In turn, no significant change in ctr1 expression was observed following exposure to Cu for 345 days. Differently, whole-body atp7b expression was markedly up-regulated in the whole-body of fish exposed Cu for 28 days and in tissues of fish exposed to Cu for 345 days. These findings indicate the expression of atp7b is more responsive to Cu accumulation in P. vivipara than ctr1 expression and, therefore, more suitable to be used as a biomarker of exposure to this metal. Also, we argue that the expression of atp7b is sustained at elevated levels for as much time as fish are maintained in Cu contaminated water.


Subject(s)
Cation Transport Proteins/metabolism , Copper-Transporting ATPases/metabolism , Copper/pharmacology , Metals/metabolism , Poecilia/metabolism , Animals , Fundulidae , Gene Expression Regulation , Tissue Distribution , Water Pollutants, Chemical/pharmacology
6.
Environ Toxicol Pharmacol ; 60: 146-156, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29723715

ABSTRACT

Copper (Cu) mining in Minas do Camaquã-Brazil, released significant amounts of metals into the João Dias creek, where Hyphessobrycon luetkenii inhabit. Because the involvement of Cu in biological processes its concentration and availability is regulated by molecules as the metal regulatory transcription factor (MTF-1), metallothionein (MT) and transporters (ATP7A and CTR1). These genes were whole sequenced and their expression (GE) evaluated in gills, liver and intestine. Were collected fish in non-contaminated and contaminated (Cu 3.4-fold higher) sites of the creek (CC and PP) and respectively translocated (CP and PC) for 96 h. The GE of the non-translocated groups evidenced that MT, MTF-1 and CTR1 have organ specific differences between both communities. Additionally the translocation allowed to identify organ specific changes associated with the activation/inactivation of protective mechanisms. These findings indicate that MTF-1, MT and CTR-1 GE play an important role in the tolerance of H. luetkenii to Cu contamination.


Subject(s)
Cation Transport Proteins/genetics , Characidae/genetics , Copper/toxicity , Metallothionein/genetics , Transcription Factors/genetics , Water Pollutants, Chemical/toxicity , Animals , Brazil , Female , Fish Proteins/genetics , Fresh Water , Gene Expression Regulation/drug effects , Gills/chemistry , Gills/drug effects , Intestines/chemistry , Intestines/drug effects , Liver/chemistry , Liver/drug effects , Male , Mining , Organ Specificity , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...