Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 62(2): 833-845, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36280613

ABSTRACT

PURPOSE: Milk fat globule membrane (MFGM) has components with emulsifier properties that could affect the provision of substrates to the brain. We evaluated the effects of MFGM plus milk fat addition to infant formulas on docosahexaenoic acid (DHA) availability and gut development. METHODS: In Experiment 1, suckling piglets were divided into 3 groups: Group L1 (n = 8): fed with a vegetal fat formula with palm oil; L2 (n = 8): canola oil formula and L3 (n = 8): milk fat + canola oil + 1% Lacprodan (3% MFGM of total protein content). In Experiment 2, Group L4 (n = 7): fed with canola oil + 1% Lacprodan (3% MFGM) and Group L5 (n = 5): milk fat + canola oil + 2% Lacprodan (6% MFGM). All formulas contained 0.2% DHA and 0.2% arachidonic acid. RESULTS: In Experiment 1, DHA was similar among the groups in both total fatty acids and plasma phospholipids (PL). However, 3% MFGM (L3) increased significantly the proportion of DHA and LC-PUFA n-3 in liver total fatty acids, jejunum, and also in jejunum PL respect to the other formulas. There were no changes in gut histology, cell proliferation, apoptosis, or brain DHA content. In Experiment 2, higher MFGM dose was used. Then, higher DHA was not only found in peripheral tissues of 6% MFGM (L5) piglets but also in plasma PL, while a similar trend was observed in cortex PL (p = 0.123). CONCLUSION: In conclusion, MFGM plus milk fat may increase DHA availability of infant formulas which could contribute to their beneficial health effects.


Subject(s)
Docosahexaenoic Acids , Infant Formula , Animals , Swine , Infant Formula/chemistry , Rapeseed Oil , Fatty Acids , Phospholipids
2.
Front Microbiol ; 13: 831737, 2022.
Article in English | MEDLINE | ID: mdl-35350617

ABSTRACT

The use of bifidobacteria as probiotics has proven to be beneficial in gastroenteric infections. Furthermore, prebiotics such as inulin can enhance the survival and growth of these bacteria. Two trials were performed to evaluate the effects of the administration of Bifidobacterium longum subsp. infantis CECT 7210 and oligofructose-enriched inulin against Salmonella enterica serovar Typhimurium or enterotoxigenic Escherichia coli (ETEC) F4. A total of 72 (Salmonella trial) and 96 (ETEC F4 trial) weaned piglets were used in a 2 × 2 design (with or without synbiotic, inoculated or not with the pathogen). After adaptation, animals were orally inoculated. Performance and clinical signs were evaluated. On days 4 and 8 (Salmonella trial) and 3 and 7 (ETEC F4 trial) post-inoculation (PI), one animal per pen was euthanized. Blood, digestive content and tissue samples were collected and microbiological counts, fermentation products, serum inflammatory markers and ileum histomorphometry analysis were performed. Both challenges had an impact on faecal consistency (p < 0.001), including the faecal shedding of Salmonella and increased numbers of enterobacteria and coliforms. The synbiotic administration did not have any effect on pathogen loads but induced changes in the fermentation profile, such as increased valeric acid in both trials as well as decreased acetic acid, except for Salmonella-challenged animals. The effect on propionate varied among trials, increasing in challenged synbiotic-treated pigs and decreasing in non-challenged ones in the Salmonella trial (P interaction = 0.013), while the opposed occurred in the ETEC F4 trial (P interaction = 0.013). The administration of the synbiotic increased intraepithelial lymphocytes (IEL; p = 0.039) on day 8 PI in the Salmonella trial and a similar trend occurred in non-challenged pigs in the ETEC F4 trial (P interaction = 0.086). The results did not provide evidence of reduced pathogen load with the synbiotic, although a modulation in fermentative activity could be identified depending on the challenge. Consistent increases were found in IEL, suggesting that this synbiotic combination has some immunomodulatory properties.

3.
Sci Rep ; 10(1): 5375, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214182

ABSTRACT

Global prevalence of obesity has increased to epidemic proportions over the past 40 years, with childhood obesity reaching alarming rates. In this study, we determined changes in liver and adipose tissue transcriptomes of a porcine model for prepubertal early obesity induced by a high-calorie diet and supplemented with bioactive ingredients. A total of 43 nine-weeks-old animals distributed in four pens were fed with four different dietary treatments for 10 weeks: a conventional diet; a western-type diet; and a western-type diet with Bifidobacterium breve and rice hydrolysate, either adding or not omega-3 fatty acids. Animals fed a western-type diet increased body weight and total fat content and exhibited elevated serum concentrations of cholesterol, whereas animals supplemented with bioactive ingredients showed lower body weight gain and tended to accumulate less fat. An RNA-seq experiment was performed with a total of 20 animals (five per group). Differential expression analyses revealed an increase in lipogenesis, cholesterogenesis and inflammatory processes in animals on the western-type diet while the supplementation with bioactive ingredients induced fatty acid oxidation and cholesterol catabolism, and decreased adipogenesis and inflammation. These results reveal molecular mechanisms underlying the beneficial effects of bioactive ingredient supplementation in an obese pig model.


Subject(s)
Pediatric Obesity/diet therapy , Pediatric Obesity/genetics , Pediatric Obesity/metabolism , Adipocytes/metabolism , Adipogenesis/drug effects , Adipose Tissue/metabolism , Animals , Bifidobacterium breve/metabolism , Body Weight/physiology , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements/microbiology , Disease Models, Animal , Fatty Acids, Omega-3/metabolism , Female , Lipid Metabolism/physiology , Lipogenesis/drug effects , Lipolysis/drug effects , Liver/metabolism , Obesity/diet therapy , Obesity/metabolism , Obesity/physiopathology , Swine , Transcriptome/genetics , Weight Gain/physiology
4.
Front Microbiol ; 8: 1570, 2017.
Article in English | MEDLINE | ID: mdl-28861074

ABSTRACT

Probiotics have been demonstrated to be useful to enhance gut health and prevent gastrointestinal infections in humans. Additionally, some multi-strain probiotic combinations have been suggested to have greater efficacy than single strains. The objective of this study is to demonstrate the potential of a combination of the probiotic strains: Bifidobacterium longum subsp. infantis CECT 7210 (brand name B. infantis IM1®) and B. animalis subsp. lactis BPL6 to enhance gut health and to ameliorate the outcome of a Salmonella challenge using a weaning piglet model. Seventy-two 28-day-old weanling piglets, 7.7 (±0.28) kg of body-weight, were distributed in a 2 × 2 factorial design; treated or not with the probiotic combination and challenged or not with the pathogen. Animals were orally challenged after an adaptation period (Day 8) with a single dose (5 × 108 cfu) of Salmonella Typhimurium. One animal per pen was euthanized on Day 12 (Day 4 post-inoculation [PI]) and Day 16 (Day 8 PI). All parameters responded to the challenge and 4 deaths were registered, indicating a severe but self-limiting challenge. Improvements registered in the challenged animals due to the probiotic were: increased voluntary feed-intake (P probiotic × challenge = 0.078), reduced fecal excretion of Salmonella (P = 0.028 at Day 1 PI and P < 0.10 at Days 3 and 5 PI), decreased rectal temperature (P probiotic × day = 0.048) and improvements in the villous:crypt ratio (P probiotic × challenge < 0.001). Moreover, general probiotic benefits were observed in both challenged and non-challenged groups: decreased diarrhea scores of the PI period (P = 0.014), improved fermentation profiles on Day 8 PI (increased ileal acetic acid [P = 0.008] and a tendency to lower colonic ammonia concentrations [P = 0.078]), stimulation of intestinal immune response by increasing villous intraepithelial lymphocytes (P = 0.015 on Day 8 PI) and an improved villous:crypt ratio (P = 0.011). In conclusion, the multi-strain probiotic had a positive effect on reducing pathogen loads and alleviating animals in a Salmonella challenge. In addition, enhanced gut health and immunity was recorded in all animals receiving the probiotic, indicating an improvement in the post-weaning outcome.

5.
Front Microbiol ; 8: 533, 2017.
Article in English | MEDLINE | ID: mdl-28443068

ABSTRACT

Probiotics have been demonstrated to be useful to enhance gut health and prevent gastrointestinal infections. The objective of this study is to demonstrate the potential of the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1) to prevent and fight intestinal disease by using a Salmonella Typhimurium (Trial 1) or an enterotoxigenic Escherichia coli K88 (Trial 2) oral challenge in a weaning piglet model. Seventy-two piglets were used in each trial. After an adaptation period, animals were orally challenged. One animal per pen was euthanized at Days 4 and 8/9 (Trial 1/Trial 2) post-inoculation (PI). Animal performance, clinical signs, pathogen excretion, fermentation, immune response, and intestinal morphology were evaluated. In Trial 1, most parameters responded to the challenge, whereas, in Trial 2, effects were much milder. Consistent effects of the probiotic were detected in both experiments: Reduction of pathogen excretion (P = 0.043 on Day 3 PI, Trial 1) or ileal colonization (33% reduction of animals with countable coliforms; P = 0.077, Trial 2); increases in intraepithelial lymphocytes (P = 0.002 on Day 8 PI in Trial 1, P = 0.091 on Day 4 PI in Trial 2), and improvement of the fermentation profile by increasing butyric acid in non-challenged animals [P challenge × probiotic (interaction) = 0.092 in Trial 1 and P = 0.056 in Trial 2] concomitant with an enhancement of the villus:crypt ratio on Day 8/9 PI (P interaction = 0.091 for Trial 1 and P = 0.006 for Trial 2). Challenged animals treated with the probiotic showed reduced feed intakes (P interaction = 0.019 in Trial 1 and P = 0.020 in Trial 2) and had lower short-chain fatty acid concentrations in the colon (P interaction = 0.008 in Trial 1 and P = 0.082 in Trial 2). In conclusion, this probiotic demonstrated potential to reduce the intestinal colonization by pathogens and to stimulate local immune response. However, effects on feed intake, microbial fermentation, and intestinal architecture showed a differential pattern between challenged and non-challenged animals. Effects of the probiotic intervention were dependent on the structure of the ecosystem in which it was applied.

6.
Front Microbiol ; 7: 655, 2016.
Article in English | MEDLINE | ID: mdl-27199974

ABSTRACT

Rotavirus is one of the main causes of acute diarrhea and enteritis in infants. Currently, studies are underway to assess the use of probiotics to improve rotavirus vaccine protection. A previous work demonstrated that the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 is able to hinder rotavirus replication both in vitro and in vivo. The present study takes a systematic approach in order to identify the molecule directly involved in rotavirus inhibition. Supernatant protease digestions revealed both the proteinaceous nature of the active substance and the fact that the molecule responsible for inhibiting rotavirus replication is released to the supernatant. Following purification by cationic exchange chromatography, active fractions were obtained and the functional compound was identified as an 11-amino acid peptide (MHQPHQPLPPT, named 11-mer peptide) with a molecular mass of 1.282 KDa. The functionality of 11-mer was verified using the synthesized peptide in Wa, Ito, and VA70 rotavirus infections of both HT-29 and MA-104 cell lines. Finally, protease activity was detected in B. longum subsp. infantis CECT 7210 supernatant, which releases 11-mer peptide. A preliminary identification of the protease is also included in the study.

SELECTION OF CITATIONS
SEARCH DETAIL
...