Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 261(Pt 2): 129942, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311131

ABSTRACT

Arabinoxylans, ß-glucans, and dextrins influence the brewing industry's filtration process and product quality. Despite their relevance, only a maximum concentration of ß-glucans is recommended. Nevertheless, filtration problems are still present, indicating that although the chemical concentration is essential, other parameters should be investigated. Molar mass and conformation are important polymer physical characteristics often neglected in this industry. Therefore, this research proposes an approach to physically characterize enzymatically isolated beer polysaccharides by asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detector. Based on the obtained molar masses, root-mean-square radius (rrms from MALS), and hydrodynamic radius (rhyd), conformational properties such as apparent density (ρapp) and rrms/rhyd can be calculated based on their molar mass and size. Consequently, the ρapp and rrms/rhyd behavior hints at the different structures within each polysaccharide. The rrms/rhyd 1.2 and high ρapp values on low molar mass dextrins (1-2·105 g/mol) indicate branches, while aggregated structures at high molar masses on arabinoxylans and ß-glucans (2·105 -6·106 g/mol) are due to an increase of ρapp and a rrms/rhyd (0.6-1). This methodology provides a new perspective to analyze starch and non-starch polysaccharides in cereal-based beverages since different physical characteristics could influence beer's filtration and sensory characteristics.


Subject(s)
Fractionation, Field Flow , beta-Glucans , Edible Grain , Dextrins , Polysaccharides , Starch/chemistry , Fractionation, Field Flow/methods , Scattering, Radiation
2.
Food Res Int ; 170: 112725, 2023 08.
Article in English | MEDLINE | ID: mdl-37316000

ABSTRACT

Palate fullness intensity and mouthfeel descriptors are essential sensory characteristics of non-alcoholic beers (NABs). The descriptor's perception might be influenced by the molar distribution of the non-volatile matrix in cereal-based beverages like NABs. However, only limited information is available on the molar mass of different substances in NABs. This study investigated the role of weight average molar mass (Mw) and size of NABs fractions and their relation to sensory perception. Industrialized bottom-fermented NABs (n = 28) from the German market and NABs produced by different methods were used in this study. A trained sensory panel evaluated palate fullness intensity, mouthfeel, and basic taste descriptors (as additional quality parameters). Asymmetric flow field-flow fractionation was used to fractionate NABs, while Mw was determined by multi-angle light scattering and differential refractive index detectors. The NABs were fractionated into three groups containing different substances: proteins, proteins-polyphenol complexes (P-PC) and low molar mass (non-)starch polysaccharides (LN-SP), and high molar mass (non-)starch polysaccharides (HN-SP). The Mw range of proteins was 18.3-41 kDa, P-PC and LN-SP 43-122.6 kDa, and HN-SP 0.40-2.18·103 kDa. Harmony, defined as the sweet and sour ratio, influenced the palate fullness intensity perception. In the harmonic samples (sour/sweet sensory balanced), the size of HN-SP (> 25 nm) showed a positive correlation to palate fullness intensity. The results suggest the importance of dextrins, arabinoxylan, and ß-glucan in modulating the sensory characteristics of harmonic bottom-fermented NABs.


Subject(s)
Beer , Beverages , Candy , Edible Grain , Polyphenols , Starch
SELECTION OF CITATIONS
SEARCH DETAIL
...