Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1813(10): 1708-16, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21782856

ABSTRACT

Parcs/Gpn3 is a putative GTPase that is conserved in eukaryotic cells from yeast to humans, suggesting that it plays a fundamental, but still unknown, cellular function. Suppression of Parcs/Gpn3 expression by RNAi completely blocked cell proliferation in MCF-12A cells and other mammary epithelial cell lines. Unexpectedly, Parcs/Gpn3 knockdown had a more modest effect in the proliferation of the tumorigenic MDA-MB-231 and SK-BR3 cells. RNA polymerase II (RNAP II) co-immunoprecipitated with Parcs/Gpn3. Parcs/Gpn3 depletion caused a reduction in overall RNA synthesis in MCF-12A cells but not in MDA-MB-231 cells, demonstrating a role for Parcs/Gpn3 in transcription, and pointing to a defect in RNA synthesis by RNAP II as the possible cause of halted proliferation. The absence of Parcs/Gpn3 in MCF-12A cells caused a dramatic change in the sub-cellular localization of Rpb1, the largest subunit of RNAP II. As expected, Rpb1 was present only in the nucleus of MCF-12A control cells, whereas in Parcs/Gpn3-depleted MCF-12A cells, Rpb1 was detected exclusively in the cytoplasm. This effect was specific, as histones remained nuclear independently of Parcs/Gpn3. Rpb1 protein levels were markedly increased in Parcs/Gpn3-depleted MCF-12A cells. Interestingly, Rpb1 distribution was only marginally affected after knocking-down Parcs/Gpn3 in MDA-MB-231 cells. In conclusion, we report here, for the first time, that Parcs/Gpn3 plays a critical role in the nuclear accumulation of RNAP II, and we propose that this function explains the relative importance of Parcs/Gpn3 in cell proliferation. Intriguingly, at least some tumorigenic mammary cells have evolved mechanisms that allow them to proliferate in a Parcs/Gpn3-independent manner.


Subject(s)
Cell Nucleus/metabolism , GTP Phosphohydrolases/physiology , RNA Polymerase II/metabolism , Breast/metabolism , Cell Nucleus/genetics , Cell Proliferation/drug effects , Cells, Cultured , Epithelial Cells/metabolism , Female , GTP Phosphohydrolases/antagonists & inhibitors , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Immunoprecipitation , Protein Binding , Protein Transport/genetics , RNA Interference/physiology , RNA, Small Interfering/pharmacology , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...