Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Endocr Connect ; 9(4): 346-359, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32229703

ABSTRACT

OBJECTIVE: Mechanisms of insulin resistance in polycystic ovary syndrome (PCOS) remain ill defined, contributing to sub-optimal therapies. Recognising skeletal muscle plays a key role in glucose homeostasis we investigated early insulin signalling, its association with aberrant transforming growth factor ß (TGFß)-regulated tissue fibrosis. We also explored the impact of aerobic exercise on these molecular pathways. METHODS: A secondary analysis from a cross-sectional study was undertaken in women with (n = 30) or without (n = 29) PCOS across lean and overweight BMIs. A subset of participants with (n = 8) or without (n = 8) PCOS who were overweight completed 12 weeks of aerobic exercise training. Muscle was sampled before and 30 min into a euglycaemic-hyperinsulinaemic clamp pre and post training. RESULTS: We found reduced signalling in PCOS of mechanistic target of rapamycin (mTOR). Exercise training augmented but did not completely rescue this signalling defect in women with PCOS. Genes in the TGFß signalling network were upregulated in skeletal muscle in the overweight women with PCOS but were unresponsive to exercise training except for genes encoding LOX, collagen 1 and 3. CONCLUSIONS: We provide new insights into defects in early insulin signalling, tissue fibrosis, and hyperandrogenism in PCOS-specific insulin resistance in lean and overweight women. PCOS-specific insulin signalling defects were isolated to mTOR, while gene expression implicated TGFß ligand regulating a fibrosis in the PCOS-obesity synergy in insulin resistance and altered responses to exercise. Interestingly, there was little evidence for hyperandrogenism as a mechanism for insulin resistance.

2.
Diabetologia ; 56(8): 1761-72, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23685457

ABSTRACT

AIMS/HYPOTHESIS: Transcriptional networks in beta cells are modulated by extracellular signals such as glucose, thereby ensuring beta cell adaptation to systemic insulin demands. Ageing is a main risk factor for type 2 diabetes and has been associated with perturbed expression of genes essential for beta cell function. We aimed to uncover glucose-dependent gene modules in mouse pancreatic islets and investigate how this regulation is affected by ageing. METHODS: Global gene expression was assessed in pancreatic islets from young and aged wild-type and Cdkn2a (Ink4a/Arf)-deficient mice exposed to different glucose concentrations. Gene modules were identified by gene ontology and gene set enrichment analysis. RESULTS: Gene expression profiling revealed that variations in glucose levels have a widespread and highly dynamic impact on the islet transcriptome. Stimulatory glucose levels induced the expression of highly beta cell-selective genes and repressed the expression of ubiquitous genes involved in stress and antiproliferative responses, and in organelle biogenesis. Interestingly, a module comprising cell cycle genes was significantly induced between non-stimulatory and stimulatory glucose concentrations. Unexpectedly, glucose regulation of gene expression was broadly maintained in islets from old mice. However, glucose induction of mitotic genes was selectively lost in aged islets and was not even restored in the absence of the cell cycle inhibitors p16(INK4a) and p19(ARF), which have been implicated in the restricted proliferative capacity of beta cells with advanced age. CONCLUSIONS/INTERPRETATION: Glucose-dependent transcriptional networks in islets are globally conserved during ageing, with the exception of the ability of stimulatory glucose levels to induce a cell cycle gene module.


Subject(s)
Aging/physiology , Glucose/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Animals , Blotting, Western , Fluorescent Antibody Technique , Gene Expression Profiling , Insulin-Secreting Cells/drug effects , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...