Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 164: 2701-2710, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32827617

ABSTRACT

Trypsins (E.C. 3.4.21.4) are digestive enzymes that catalyze the hydrolysis of peptide bonds containing arginine and lysine residues. Some trypsins from fish species are active at temperatures just above freezing, and for that are called cold-adapted enzymes, having many biotechnological applications. In this work, we characterized a recombinant trypsin-III from Monterey sardine (Sardinops caeruleus) and studied the role of a single residue on its cold-adapted features. The A236N mutant from sardine trypsin-III showed higher activation energy for the enzyme-catalyzed reaction, it was more active at higher temperatures, and exhibited a higher thermal stability than the wild-type enzyme, suggesting a key role of this residue. The thermodynamic activation parameters revealed an increase in the activation enthalpy for the A236N mutant, suggesting the existence of more intramolecular contacts during the activation step. Molecular models for both enzymes suggest that a hydrogen-bond involving N236 may contact the C-terminal α-helix to the vicinity of the active site, thus affecting the biochemical and thermodynamic properties of the enzyme.


Subject(s)
Fishes/metabolism , Mutation , Trypsin/chemistry , Trypsin/genetics , Animals , Cold Temperature , Enzyme Activation , Enzyme Stability , Fish Proteins/chemistry , Fish Proteins/genetics , Fishes/genetics , Hydrogen Bonding , Models, Molecular , Molecular Docking Simulation , Protein Structure, Secondary
2.
Dev Comp Immunol ; 113: 103807, 2020 12.
Article in English | MEDLINE | ID: mdl-32735961

ABSTRACT

Lysozymes play a key role in innate immune response to bacterial pathogens, catalyzing the hydrolysis of the peptidoglycan layer of bacterial cell walls. In this study, the genes encoding the c-type (TmLyzc) and g-type (TmLyzg) lysozymes from Totoaba macdonaldi were cloned and characterized. The cDNA sequences of TmLyzg and TmLyzc were 582 and 432 bp, encoding polypeptides of 193 and 143 amino acids, respectively. Amino acid sequences of these lysozymes shared high identity (60-90%) with their counterparts of other teleosts and showed conserved functional-structural signatures of the lysozyme superfamily. Phylogenetic analysis indicated a close relationship with their vertebrate homologues but distinct evolutionary paths for each lysozyme. Expression analysis by qRT-PCR revealed that TmLyzc was expressed in stomach and pyloric caeca, while TmLyzg was highly expressed in stomach and heart. These results suggest that both lysozymes play important roles in defense of totoaba against bacterial infections or as digestive enzyme.


Subject(s)
Anti-Bacterial Agents/metabolism , Fish Proteins/genetics , Fishes/immunology , Gastric Mucosa/metabolism , Muramidase/genetics , Myocardium/metabolism , Animals , Chickens/genetics , Cloning, Molecular , Digestion , Evolution, Molecular , Fish Proteins/metabolism , Geese/genetics , Gene Expression Profiling , Immunity, Innate , Muramidase/metabolism , Organ Specificity , Phylogeny , Sequence Alignment
3.
Biophys Chem ; 264: 106409, 2020 09.
Article in English | MEDLINE | ID: mdl-32534374

ABSTRACT

Inhibition of pancreatic lipase (PL) is used to treat dyslipidemias and obesity. Phenolic compounds are highly bioactive molecules that can inhibit various enzymes. Our aim was to evaluate the inhibitory activity of selected phenolic compounds of increasing molecular complexity, namely, phenolic acids, mangiferin, penta-O-galloyl-ß-d-glucose (PGG) and tannic acid (TA) against porcine PL, according to in vitro and in silico methodologies. TA and PGG were effective inhibitors (IC50 22.4 and 64.6 µM, respectively), with strong affinity towards the enzyme-substrate complex (uncompetitive inhibition). Fluorescence quenching suggested phenolic-enzyme interactions, which may occur at the PL-colipase complex interface, according to molecular docking. Interactions are likely between hydroxyl groups and polar amino acid residues. We conclude that TA and PGG, but not simple phenolic acids, are effective PL inhibitors, likely due to their numerous hydroxyl groups, which promote phenolic-enzyme interactions. Thus, their consumption may exert health benefits derived from their effects on this digestive enzyme.


Subject(s)
Enzyme Inhibitors/pharmacology , Hydrolyzable Tannins/pharmacology , Lipase/antagonists & inhibitors , Pancreas/drug effects , Animals , Fluorescence , Hydrogen Bonding , Kinetics , Lipase/metabolism , Molecular Docking Simulation , Pancreas/enzymology , Substrate Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...