Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 192: 115074, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37236094

ABSTRACT

The Mar Menor hypersaline coastal lagoon has suffered serious degradation in the last three decades attributable to nutrient pollution. In 2015, the lagoon experienced an intensive bloom of cyanobacteria that triggered a drastic change of its ecosystem. Our analyses indicate that phytoplankton in 2016-2021 did not present a seasonal variability pattern; the community was mainly dominated by diatoms and punctually reached abundance peaks above 107 cell L-1 along with chlorophyll a concentrations exceeding 20 µg L-1. The predominant diatom genera during these blooms were different as well as the nutrient conditions under which they were produced. These high diatom abundances are unprecedented in the lagoon; in fact, our data indicate that the taxonomic composition, time variation patterns and cell abundance of phytoplankton in 2016-2021 differ notably in comparison to the data published before 2015. Consequently, our results support the finding that the trophic status of the lagoon has changed profoundly.


Subject(s)
Diatoms , Phytoplankton , Ecosystem , Chlorophyll A , Environmental Monitoring/methods , Eutrophication
2.
Mol Ecol ; 29(10): 1820-1838, 2020 05.
Article in English | MEDLINE | ID: mdl-32323882

ABSTRACT

Deep ocean microbial communities rely on the organic carbon produced in the sunlit ocean, yet it remains unknown whether surface processes determine the assembly and function of bathypelagic prokaryotes to a larger extent than deep-sea physicochemical conditions. Here, we explored whether variations in surface phytoplankton assemblages across Atlantic, Pacific and Indian ocean stations can explain structural changes in bathypelagic (ca. 4,000 m) free-living and particle-attached prokaryotic communities (characterized through 16S rRNA gene sequencing), as well as changes in prokaryotic activity and dissolved organic matter (DOM) quality. We show that the spatial structuring of prokaryotic communities in the bathypelagic strongly followed variations in the abundances of surface dinoflagellates and ciliates, as well as gradients in surface primary productivity, but were less influenced by bathypelagic physicochemical conditions. Amino acid-like DOM components in the bathypelagic reflected variations of those components in surface waters, and seemed to control bathypelagic prokaryotic activity. The imprint of surface conditions was more evident in bathypelagic than in shallower mesopelagic (200-1,000 m) communities, suggesting a direct connectivity through fast-sinking particles that escape mesopelagic transformations. Finally, we identified a pool of endemic deep-sea prokaryotic taxa (including potentially chemoautotrophic groups) that appear less connected to surface processes than those bathypelagic taxa with a widespread vertical distribution. Our results suggest that surface planktonic communities shape the spatial structure of the bathypelagic microbiome to a larger extent than the local physicochemical environment, likely through determining the nature of the sinking particles and the associated prokaryotes reaching bathypelagic waters.


Subject(s)
Plankton , Seawater , Atlantic Ocean , Ciliophora , Dinoflagellida , Indian Ocean , Pacific Ocean , Plankton/genetics , RNA, Ribosomal, 16S/genetics
3.
Environ Sci Technol ; 50(20): 10780-10794, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27597444

ABSTRACT

Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using automatic high frequency monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This Critical Review bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs and maximize the ecosystem services they provide.


Subject(s)
Ecosystem , Lakes , Environmental Monitoring , Recreation
4.
J Environ Manage ; 91(6): 1255-67, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20199843

ABSTRACT

Selection of reservoir location, the floodable basin forest handling, and the design of dam structures devoted to water supply (e.g. water outlets) constitute relevant features which strongly determine water quality and frequently demand management strategies to be adopted. Although these crucial aspects should be carefully examined during dam design before construction, currently the development of ad hoc limnological studies tailoring dam location and dam structures to the water quality characteristics expected in the future reservoir is not typical practice. In this study, we use numerical simulation to assist on the design of a new dam project in Spain with the aim of maximizing the quality of the water supplied by the future reservoir. First, we ran a well-known coupled hydrodynamic and biogeochemical dynamic numerical model (DYRESM-CAEDYM) to simulate the potential development of anoxic layers in the future reservoir. Then, we generated several scenarios corresponding to different potential hydraulic conditions and outlet configurations. Second, we built a simplified numerical model to simulate the development of the hypolimnetic oxygen content during the maturation stage after the first reservoir filling, taking into consideration the degradation of the terrestrial organic matter flooded and the adoption of different forest handling scenarios. Results are discussed in terms of reservoir design and water quality management. The combination of hypolimnetic withdrawal from two deep outlets and the removal of all the valuable terrestrial vegetal biomass before flooding resulted in the best water quality scenario.


Subject(s)
Decision Making, Organizational , Models, Theoretical , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...