Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(28): 5288-5299, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37401648

ABSTRACT

Nonlinear active microrheology molecular dynamics simulations of high-density two-dimensional fluids show that the presence of strong confining forces and an external pulling force induces a correlation between the velocity and position dynamics of the tracer particle. This correlation manifests in the form of an effective temperature and an effective mobility of the tracer particle, which is responsible for the breaking of the equilibrium fluctuation-dissipation theorem. This fact is shown by measuring the tracer particle's temperature and mobility directly from the first two moments of the velocity distribution of a tracer particle and by formulating a diffusion theory in which effective thermal and transport properties are decoupled from the velocity dynamics. Furthermore, the flexibility of the attractive and repulsive forces in the tested interaction potentials allowed us to relate the temperature and mobility behaviors to the nature of the interactions and the structure of the surrounding fluid as a function of the pulling force. These results provide a refreshing physical interpretation of the phenomena observed in non-linear active microrheology.

2.
J Chem Phys ; 148(10): 104505, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29544304

ABSTRACT

Upon compression, the equilibrium hard-sphere liquid [pair potential uHS(r)] freezes at a packing fraction ϕf = 0.494 or, if crystallization is prevented, becomes metastable up to its glass transition at ϕg ≈ 0.58. Throughout the fluid regime (ϕ < ϕg), we are, thus, certain that this model liquid does not exhibit any form of kinetic arrest. If, however, a small portion of these spheres (packing fraction ϕ2 ≪ ϕ) happen to ignore each other [u22(r) = 0] but do not ignore the remaining "normal" hard spheres [u12(r) = u21(r) = u11(r) = uHS(r)], whose packing fraction is thus ϕ1 = ϕ - ϕ2, they run the risk of becoming dynamically arrested before they demix from the "normal" particles. This unexpected and counterintuitive scenario was first theoretically predicted and then confirmed by simulations.

3.
J Chem Phys ; 144(21): 214502, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27276958

ABSTRACT

Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

4.
J Chem Phys ; 136(23): 234503, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22779602

ABSTRACT

Density of states Monte Carlo simulations have been performed to study the isotropic-nematic (IN) transition of the Lebwohl-Lasher model for liquid crystals. The IN transition temperature was calculated as a function of system size using expanded ensemble density of states simulations with histogram reweighting. The IN temperature for infinite system size was obtained by extrapolation of three independent measures. A subsequent analysis of the kinetics in the model showed that the transition occurs via spinodal decomposition through aggregation of clusters of liquid crystal molecules.

5.
Nature ; 485(7396): 86-9, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22552096

ABSTRACT

Technological applications of liquid crystals have generally relied on control of molecular orientation at a surface or an interface. Such control has been achieved through topography, chemistry and the adsorption of monolayers or surfactants. The role of the substrate or interface has been to impart order over visible length scales and to confine the liquid crystal in a device. Here, we report results from a computational study of a liquid-crystal-based system in which the opposite is true: the liquid crystal is used to impart order on the interfacial arrangement of a surfactant. Recent experiments on macroscopic interfaces have hinted that an interfacial coupling between bulk liquid crystal and surfactant can lead to a two-dimensional phase separation of the surfactant at the interface, but have not had the resolution to measure the structure of the resulting phases. To enhance that coupling, we consider the limit of nanodroplets, the interfaces of which are decorated with surfactant molecules that promote local perpendicular orientation of mesogens within the droplet. In the absence of surfactant, mesogens at the interface are all parallel to that interface. As the droplet is cooled, the mesogens undergo a transition from a disordered (isotropic) to an ordered (nematic or smectic) liquid-crystal phase. As this happens, mesogens within the droplet cause a transition of the surfactant at the interface, which forms new ordered nanophases with morphologies dependent on surfactant concentration. Such nanophases are reminiscent of those encountered in block copolymers, and include circular, striped and worm-like patterns.


Subject(s)
Liquid Crystals/chemistry , Nanostructures/chemistry , Surface-Active Agents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...