Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 19(26): 8533-42, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23649944

ABSTRACT

The catalytic, deactivation, and regeneration characteristics of large coffin-shaped H-ZSM-5 crystals were investigated during the methanol-to-hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas-phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin-shaped zeolite H-ZSM-5 crystals in a fixed-bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization-dependent UV-visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time-of-flight secondary-ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed-bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2 /inert gas mixtures at 550 °C. UV-visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H-ZSM-5 deactivated more rapidly at higher reaction temperature.

2.
Chemistry ; 17(49): 13773-81, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22052456

ABSTRACT

A combination of atomic force microscopy (AFM), high-resolution scanning electron microscopy (HR-SEM), focused-ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), confocal fluorescence microscopy (CFM), and UV/Vis and synchrotron-based IR microspectroscopy was used to investigate the dealumination processes of zeolite ZSM-5 at the individual crystal level. It was shown that steaming has a significant impact on the porosity, acidity, and reactivity of the zeolite materials. The catalytic performance, tested by the styrene oligomerization and methanol-to-olefin reactions, led to the conclusion that mild steaming conditions resulted in greatly enhanced acidity and reactivity of dealuminated zeolite ZSM-5. Interestingly, only residual surface mesoporosity was generated in the mildly steamed ZSM-5 zeolite, leading to rapid crystal coloration and coking upon catalytic testing and indicating an enhanced deactivation of the zeolites. In contrast, harsh steaming conditions generated 5-50 nm mesopores, extensively improving the accessibility of the zeolites. However, severe dealumination decreased the strength of the Brønsted acid sites, causing a depletion of the overall acidity, which resulted in a major drop in catalytic activity.


Subject(s)
Zeolites/chemistry , Hydrogen-Ion Concentration , Microscopy, Confocal , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Porosity , Spectrophotometry, Infrared
3.
Phys Chem Chem Phys ; 13(35): 15985-94, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21814671

ABSTRACT

A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy is applied to investigate the influence of an external silicalite-1 shell on the Brønsted acidity and coke formation process of individual H-ZSM-5 zeolite crystals. Three probe reactions were used: oligomerization of styrene, methanol-to-olefin (MTO) conversion and aromatization of light naphtha (LNA) derivatives. Oligomerization of styrene leads to the formation of optically active carbocationic oligomers. Different styrene substitutions indicate the conversion ability of the catalyst acid core, a preferred alignment of the oligomers within the straight zeolite channels and a Brønsted acidity gradient throughout the zeolite crystal. Both the MTO conversion and the LNA process lead to limited carbonaceous deposition within the external silicalite-1 layer. This outer shell furthermore prevents the growth of extended coke species at the zeolite external surface. During MTO, the formation of carbonaceous compounds initiates at the center of the H-ZSM-5 zeolite core and expands towards the zeolite exterior. This coke build-up starts with a 420 nm UV-Vis absorption band, assigned to methyl-substituted aromatic carbocations, and a second band around 550 nm, which is indicative of their growth towards larger conjugated systems. Aromatization of linear and branched C5 paraffins causes negligible darkening of the zeolite crystals though it forms fluorescent coke deposits and their precursors within the H-ZSM-5 catalyst. Olefin homologues on the contrary cause pronounced darkening of the zeolite composite. Methyl-branching of these reactants slows down the coke formation rate and produces carbonaceous species that are more restricted in their molecular size.

4.
Chemistry ; 17(10): 2874-84, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21305622

ABSTRACT

Coke formation during the methanol-to-olefin (MTO) conversion has been studied at the single-particle level with in situ UV/Vis and confocal fluorescence microscopy. For this purpose, large H-ZSM-5 crystals differing in their Si/Al molar ratio have been investigated. During MTO, performed at 623 and 773 K, three major UV/Vis bands assigned to different carbonaceous deposits and their precursors are observed. The absorption at 420 nm, assigned to methyl-substituted aromatic compounds, initiates the buildup of the optically active coke species. With time-on-stream, these carbonaceous compounds expand in size, resulting in the gradual development of a second absorption band at around 500 nm. An additional broad absorption band in the 600 nm region indicates the enhanced formation of extended carbonaceous compounds that form as the reaction temperature is raised. Overall, the rate of coke formation decreases with decreasing aluminum content. Analysis of the reaction kinetics indicates that an increased Brønsted acid site density facilitates the formation of larger coke species and enhances their formation rate. The use of multiple excitation wavelengths in confocal fluorescence microscopy enables the localization of coke compounds with different molecular dimensions in an individual H-ZSM-5 crystal. It demonstrates that small coke species evenly spread throughout the entire H-ZSM-5 crystal, whereas extended coke deposits primarily form near the crystal edges and surfaces. Polarization-dependent UV/Vis spectroscopy measurements illustrate that extended coke species are predominantly formed in the straight channels of H-ZSM-5. In addition, at higher temperatures, fast deactivation leads to the formation of large aromatic compounds within channel intersections and at the external zeolite surface, where the lack of spatial restrictions allows the formation of graphite-like coke.

5.
J Am Chem Soc ; 132(30): 10429-39, 2010 Aug 04.
Article in English | MEDLINE | ID: mdl-20662520

ABSTRACT

The etherification of biomass-based alcohols with various linear alpha-olefins under solvent-free conditions was followed in a space- and time-resolved manner on 9 microm large H-Beta zeolite crystals by confocal fluorescence microscopy. This allowed us to visualize the interaction with the substrate and distribution of the coke products into the catalyst at the level of an individual zeolite crystal during the etherification process. The spectroscopic information obtained on the micrometer-scale zeolite was in line with the results obtained with bulk characterization techniques and further confirmed by the catalytic results obtained both for micrometer-scale and nanoscale zeolites. This allowed us to explain the influence of the substrate type (glycerol, glycols, and alkenes) and zeolite properties (Si/Al ratio and particle size) on the etherification activity. The etherification of the biomass-based alcohols takes place mainly on the external surface of the zeolite particles. The gradual blockage of the external surface of the zeolite results in a partial or total loss of etherification activity. The deactivation could be attributed to olefin oligomerization. The high conversions obtained in the etherification of 1,2-propylene glycol with long linear alkenes (up to 80%) and the pronounced deactivation of the zeolite observed in the etherification of glycerol with long linear alkenes (max. 20% conversion) were explained by the spectroscopic measurements and is due to differences in the adsorption, i.e., in the center of the zeolite particle for glycerol and on the external surface in the case of glycols.


Subject(s)
Alcohols/chemistry , Alkenes/chemistry , Biomass , Ethers/chemistry , Zeolites/chemistry , Catalysis , Microscopy, Confocal , Microscopy, Fluorescence , Spectrophotometry , Spectroscopy, Fourier Transform Infrared
6.
Chemistry ; 14(36): 11320-7, 2008.
Article in English | MEDLINE | ID: mdl-19021162

ABSTRACT

Formation of coke in large H-ZSM-5 and H-SAPO-34 crystals during the methanol-to-olefin (MTO) reaction has been studied in a space- and time-resolved manner. This has been made possible by applying a high-temperature in-situ cell in combination with micro-spectroscopic techniques. The buildup of optically active carbonaceous species allows detection with UV/Vis microscopy, while a confocal fluorescence microscope in an upright configuration visualises the formation of coke molecules and their precursors inside the catalyst grains. In H-ZSM-5, coke is initially formed at the triangular crystal edges, in which straight channel openings reach directly the external crystal surface. At reaction temperatures ranging from 530 to 745 K, two absorption bands at around 415 and 550 nm were detected due to coke or its precursors. Confocal fluorescence microscopy reveals fluorescent carbonaceous species that initially form in the near-surface area and gradually diffuse inwards the crystal in which internal intergrowth boundaries hinder a facile penetration for the more bulky aromatic compounds. In the case of H-SAPO-34 crystals, an absorption band at around 400 nm arises during the reaction. This band grows in intensity with time and then decreases if the reaction is carried out between 530 and 575 K, whereas at higher temperatures its intensity remains steady with time on stream. Formation of the fluorescent species during the course of the reaction is limited to the near-surface region of the H-SAPO-34 crystals, thereby creating diffusion limitations for the coke front moving towards the middle of the crystal during the MTO reaction. The two applied micro-spectroscopic techniques introduced allow us to distinguish between graphite-like coke deposited on the external crystal surface and aromatic species formed inside the zeolite channels. The use of the methods can be extended to a wide variety of catalytic reactions and materials in which carbonaceous deposits are formed.

SELECTION OF CITATIONS
SEARCH DETAIL
...