Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35577500

ABSTRACT

Despite promising clinical results in a small subset of malignancies, therapies based on engineered chimeric antigen receptor and T-cell receptor T cells are associated with serious adverse events, including cytokine release syndrome and neurotoxicity. These toxicities are sometimes so severe that they significantly hinder the implementation of this therapeutic strategy. For a long time, existing preclinical models failed to predict severe toxicities seen in human clinical trials after engineered T-cell infusion. However, in recent years, there has been a concerted effort to develop models, including humanized mouse models, which can better recapitulate toxicities observed in patients. The Accelerating Development and Improving Access to CAR and TCR-engineered T cell therapy (T2EVOLVE) consortium is a public-private partnership directed at accelerating the preclinical development and increasing access to engineered T-cell therapy for patients with cancer. A key ambition in T2EVOLVE is to design new models and tools with higher predictive value for clinical safety and efficacy, in order to improve and accelerate the selection of lead T-cell products for clinical translation. Herein, we review existing preclinical models that are used to test the safety of engineered T cells. We will also highlight limitations of these models and propose potential measures to improve them.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Animals , Cytokine Release Syndrome , Humans , Immunotherapy, Adoptive/adverse effects , Mice , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes
2.
J Clin Invest ; 132(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35503659

ABSTRACT

Chimeric antigen receptor (CAR) T cell expansion and persistence represent key factors to achieve complete responses and prevent relapses. These features are typical of early memory T cells, which can be highly enriched through optimized manufacturing protocols. Here, we investigated the efficacy and safety profiles of CAR T cell products generated from preselected naive/stem memory T cells (TN/SCM), as compared with unselected T cells (TBULK). Notwithstanding their reduced effector signature in vitro, limiting CAR TN/SCM doses showed superior antitumor activity and the unique ability to counteract leukemia rechallenge in hematopoietic stem/precursor cell-humanized mice, featuring increased expansion rates and persistence together with an ameliorated exhaustion and memory phenotype. Most relevantly, CAR TN/SCM proved to be intrinsically less prone to inducing severe cytokine release syndrome, independently of the costimulatory endodomain employed. This safer profile was associated with milder T cell activation, which translated into reduced monocyte activation and cytokine release. These data suggest that CAR TN/SCM are endowed with a wider therapeutic index compared with CAR TBULK.


Subject(s)
Receptors, Chimeric Antigen , Animals , Cytokine Release Syndrome , Immunotherapy, Adoptive/methods , Interleukin-15 , Memory T Cells , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics
3.
Sci Transl Med ; 14(628): eabg3072, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35044789

ABSTRACT

Immunotherapy with chimeric antigen receptor (CAR)­engineered T cells showed exceptional successes in patients with refractory B cell malignancies. However, first-in-human studies in solid tumors revealed unique hurdles contributing to poor demonstration of efficacy. Understanding the determinants of tumor recognition by CAR T cells should translate into the design of strategies that can overcome resistance. Here, we show that multiple carcinomas express extracellular N-glycans, whose abundance negatively correlates with CAR T cell killing. By knocking out mannoside acetyl-glucosaminyltransferase 5 (MGAT5) in pancreatic adenocarcinoma (PAC), we showed that N-glycans protect tumors from CAR T cell killing by interfering with proper immunological synapse formation and reducing transcriptional activation, cytokine production, and cytotoxicity. To overcome this barrier, we exploited the high metabolic demand of tumors to safely inhibit N-glycans synthesis with the glucose/mannose analog 2-deoxy-d-glucose (2DG). Treatment with 2DG disrupts the N-glycan cover on tumor cells and results in enhanced CAR T cell activity in different xenograft mouse models of PAC. Moreover, 2DG treatment interferes with the PD-1­PD-L1 axis and results in a reduced exhaustion profile of tumor-infiltrating CAR T cells in vivo. The combined 2DG and CAR T cell therapy was successful against multiple carcinomas besides PAC, including those arising from the lung, ovary, and bladder, and with different clinically relevant CAR specificities, such as CD44v6 and CEA. Overall, our results indicate that tumor N-glycosylation regulates the quality and magnitude of CAR T cell responses, paving the way for the rational design of improved therapies against solid malignancies.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Adenocarcinoma/metabolism , Animals , Cell Line, Tumor , Female , Humans , Immunotherapy, Adoptive/methods , Mice , Pancreatic Neoplasms/metabolism , Polysaccharides/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Xenograft Model Antitumor Assays
4.
Front Immunol ; 9: 2251, 2018.
Article in English | MEDLINE | ID: mdl-30333826

ABSTRACT

Recent evidence indicates that immune cells contribute to the formation of tumor metastases by regulating the pre-metastatic niche. Whether tumor-derived factors involved in primary tumor formation play a role in metastasis formation is poorly characterized. Oxysterols act as endogenous regulators of lipid metabolism through the interaction with the nuclear Liver X Receptors-(LXR)α and LXRß. In the context of tumor development, they establish a pro-tumor environment by dampening antitumor immune responses, and by recruiting pro-angiogenic and immunosuppressive neutrophils. However, the ability of LXR/oxysterol axis to promote tumor invasion and metastasis by exploiting immune cells, is still up to debate. In this study we provide evidence that oxysterols participate in the primary growth of orthotopically implanted 4T1 breast tumors by establishing a tumor-promoting microenvironment. Furthermore, we show that oxysterols are involved in the metastatic spread of 4T1 breast tumors, since their enzymatic inactivation mediated by the sulfotransferase 2B1b, reduces the number of metastatic cells in the lungs of tumor-bearing mice. Finally, we provide evidence that oxysterols support the metastatic cascade by modifying the lung metastatic niche, particularly allowing the recruitment of tumor-promoting neutrophils. These results identify a possible new metastatic pathway to target in order to prevent metastasis formation in breast cancer patients.


Subject(s)
Breast Neoplasms , Lung Neoplasms/enzymology , Neoplasm Proteins/metabolism , Oxysterols/metabolism , Sulfotransferases/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Liver X Receptors/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis
5.
Proc Natl Acad Sci U S A ; 113(41): E6219-E6227, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27671648

ABSTRACT

Cells in the tumor microenvironment may be reprogrammed by tumor-derived metabolites. Cholesterol-oxidized products, namely oxysterols, have been shown to favor tumor growth directly by promoting tumor cell growth and indirectly by dampening antitumor immune responses. However, the cellular and molecular mechanisms governing oxysterol generation within tumor microenvironments remain elusive. We recently showed that tumor-derived oxysterols recruit neutrophils endowed with protumoral activities, such as neoangiogenesis. Here, we show that hypoxia inducible factor-1a (HIF-1α) controls the overexpression of the enzyme Cyp46a1, which generates the oxysterol 24-hydroxycholesterol (24S-HC) in a pancreatic neuroendocrine tumor (pNET) model commonly used to study neoangiogenesis. The activation of the HIF-1α-24S-HC axis ultimately leads to the induction of the angiogenic switch through the positioning of proangiogenic neutrophils in proximity to Cyp46a1+ islets. Pharmacologic blockade or genetic inactivation of oxysterols controls pNET tumorigenesis by dampening the 24S-HC-neutrophil axis. Finally, we show that in some human pNET samples Cyp46a1 transcripts are overexpressed, which correlate with the HIF-1α target VEGF and with tumor diameter. This study reveals a layer in the angiogenic switch of pNETs and identifies a therapeutic target for pNET patients.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Hydroxycholesterols/metabolism , Neuroendocrine Tumors/etiology , Neuroendocrine Tumors/metabolism , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Cholesterol 24-Hydroxylase , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Enzyme Activation , Female , Fluorescent Antibody Technique , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , Male , Mice , Mice, Transgenic , Neovascularization, Pathologic/genetics , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
6.
Cancer Immunol Immunother ; 65(11): 1303-1315, 2016 11.
Article in English | MEDLINE | ID: mdl-27520505

ABSTRACT

Tumor-derived metabolites dampen tumor-infiltrating immune cells and antitumor immune responses. Among the various metabolites produced by tumors, we recently showed that cholesterol oxidized products, namely oxysterols, favor tumor growth through the inhibition of DC migration toward lymphoid organs and by promoting the recruitment of pro-tumor neutrophils within the tumor microenvironment. Here, we tested different drugs capable of blocking cholesterol/oxysterol formation. In particular, we tested efficacy and safety of different administration schedules, and of immunotherapy-based combination of a class of compounds, namely zaragozic acids, which inhibit cholesterol pathway downstream of mevalonate formation, thus leaving intact the formation of the isoprenoids, which are required for the maturation of proteins involved in the immune cell function. We show that zaragozic acids inhibit the in vivo growth of the RMA lymphoma and the Lewis lung carcinoma (LLC) without inducing side effects. Tumor growth inhibition requires an intact immune system, as immunodeficient tumor-bearing mice do not respond to zaragozic acid treatment. Of note, the effect of zaragozic acids is accompanied by a marked reduction in the LXR target genes Abcg1, Mertk, Scd1 and Srebp-1c in the tumor microenvironment. On the other hand, zoledronate, which blocks also isoprenoid formation, did not control the LLC tumor growth. Finally, we show that zaragozic acids potentiate the antitumor effects of active and adoptive immunotherapy, significantly prolonging the overall survival of tumor-bearing mice treated with the combo zaragozic acids and TAA-loaded DCs. This study identifies zaragozic acids as new antitumor compounds exploitable for the treatment of cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Carcinoma, Lewis Lung/therapy , Dendritic Cells/immunology , Immunotherapy, Adoptive/methods , Lymphoma, T-Cell/therapy , Tricarboxylic Acids/therapeutic use , Animals , Carcinoma, Lewis Lung/immunology , Cholesterol/metabolism , Combined Modality Therapy , Dendritic Cells/transplantation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, T-Cell/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Oxysterols/metabolism , Tumor Escape , Tumor Microenvironment
7.
Cancer Immunol Immunother ; 65(1): 111-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26646851

ABSTRACT

Targeting the tumor microenvironment focusing on immune cells has recently become a standard of care for some tumors. Indeed, antibodies blocking immune checkpoints (e.g., anti-CTLA-4 and anti-PD1 mAbs) have been approved by regulatory agencies for the treatment of some solid tumors based upon successes in many clinical trials. Although tumor metabolism has always attracted the attention of tumor biologists, only recently have oncologists renewed their interest in this field of tumor biology research. This has highlighted the possibility to pharmacologically target rate-limiting enzymes along key metabolic pathways of tumor cells, such as lipogenesis and aerobic glycolysis. Altered tumor metabolism has also been shown to influence the functionality of the tumor microenvironment as a whole, particularly the immune cell component of thereof. Cholesterol, oxysterols and Liver X receptors (LXRs) have been investigated in different tumor models. Recent in vitro and in vivo results point to their involvement in tumor and immune cell biology, thus making the LXR/oxysterol axis a possible target for novel antitumor strategies. Indeed, the possibility to target both tumor cell metabolism (i.e., cholesterol metabolism) and tumor-infiltrating immune cell dysfunctions induced by oxysterols might result in a synergistic antitumor effect generating long-lasting memory responses. This review will focus on the role of cholesterol metabolism with particular emphasis on the role of the LXR/oxysterol axis in the tumor microenvironment, discussing mechanisms of action, pros and cons, and strategies to develop antitumor therapies based on the modulation of this axis.


Subject(s)
Cholesterol/immunology , Humans , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...