Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pathog Dis ; 77(8)2019 11 01.
Article in English | MEDLINE | ID: mdl-31603505

ABSTRACT

Antibiotic resistance and infection recurrence are critical issues in treating bacterial vaginosis, the most common vaginal disorder in women of reproductive age. Novel alternatives to traditional antibiotics, such as peptidomimetics, have the potential to address this challenge. Previously, two series of cationic amphiphiles (CAms) were developed with both hydrophilic head groups and non-polar domains, giving them the ability to self-assemble into supramolecular nanostructures with membrane-lytic properties. Those CAms were shown to be effective against biofilms of Gardnerella vaginalis while preserving the commensal microbiota. Two new series of CAms were designed with varying levels of flexibility between the hydrophilic head groups and the hydrophobic domains. Activities against the vaginal pathogen G. vaginalis ranged from 1.3 to 18.5 µM, while the tested vaginal lactobacilli were significantly more tolerant of CAms, with minimal inhibitory concentration values as high as 208 µM. Minimal biofilm bactericidal concentrations of the tested CAms ranged from 21.47 to <388.3 µM, and were lowest against resistant forms of G. vaginalis, while Lactobacillus biofilms were tolerant of concentrations ≥687 µM. Safety aspects of the CAms were also investigated, and they were found to be safe for use against vaginal ectocervical tissue.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/pharmacology , Gardnerella vaginalis/drug effects , Anti-Infective Agents/toxicity , Antimicrobial Cationic Peptides/toxicity , Biofilms/drug effects , Cell Survival/drug effects , Female , Humans , Lactobacillus/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Models, Theoretical , Treatment Outcome , Vaginosis, Bacterial/drug therapy
2.
Langmuir ; 35(16): 5557-5567, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30888181

ABSTRACT

Small-molecule cationic amphiphiles (CAms) were designed to combat the rapid rise in drug-resistant bacteria. CAms were designed to target and compromise the structural integrity of bacteria membranes, leading to cell rupture and death. Discrete structural features of CAms were varied, and structure-activity relationship studies were performed to guide the rational design of potent antimicrobials with desirable selectivity and cytocompatibility profiles. In particular, the effects of cationic conformational flexibility, hydrophobic domain flexibility, and hydrophobic domain architecture were evaluated. Their influence on antimicrobial efficacy in Gram-positive and Gram-negative bacteria was determined, and their safety profiles were established by assessing their impact on mammalian cells. All CAms have a potent activity against bacteria, and hydrophobic domain rigidity and branched architecture contribute to specificity. The insights gained from this project will aid in the optimization of CAm structures.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cations/chemical synthesis , Cations/chemistry , Cations/pharmacology , Cells, Cultured , Gram-Negative Bacteria/cytology , Gram-Positive Bacteria/cytology , Humans , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Particle Size , Surface Properties , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
3.
Nanomaterials (Basel) ; 8(2)2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29393918

ABSTRACT

Previously-designed amphiphilic scorpion-like macromolecule (AScM) nanoparticles (NPs) showed elevated potency to counteract oxidized low-density lipoprotein (oxLDL) uptake in atherosclerotic macrophages, but failed to ameliorate oxLDL-induced inflammation. We designed a new class of composite AScMs incorporating lithocholic acid (LCA), a natural agonist for the TGR5 receptor that is known to counteract atherosclerotic inflammation, with two complementary goals: to simultaneously decrease lipid uptake and inhibit pro-inflammatory cytokine secretion by macrophages. LCA was conjugated to AScMs for favorable interaction with TGR5 and was also hydrophobically modified to enable encapsulation in the core of AScM-based NPs. Conjugates were formulated into negatively charged NPs with different core/shell combinations, inspired by the negative charge on oxLDL to enable competitive interaction with scavenger receptors (SRs). NPs with LCA-containing shells exhibited reduced sizes, and all NPs lowered oxLDL uptake to <30% of untreated, human derived macrophages in vitro, while slightly downregulating SR expression. Pro-inflammatory cytokine expression, including IL-1ß, IL-8, and IL-10, is known to be modulated by TGR5, and was dependent on NP composition, with LCA-modified cores downregulating inflammation. Our studies indicate that LCA-conjugated AScM NPs offer a unique approach to minimize atherogenesis and counteract inflammation.

4.
Langmuir ; 33(51): 14663-14673, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29144759

ABSTRACT

Liposomes have become increasingly common in the delivery of bioactive agents due to their ability to encapsulate hydrophobic and hydrophilic drugs with excellent biocompatibility. While commercial liposome formulations improve bioavailability of otherwise quickly eliminated or insoluble drugs, tailoring formulation properties for specific uses has become a focus of liposome research. Here, we report the design, synthesis, and characterization of two series of amphiphilic macromolecules (AMs), consisting of acylated polyol backbones conjugated to poly(ethylene glycol) (PEG) that can serve as the sole additives to stabilize and control hydrophilic molecule release rates from distearoylphosphatidylcholine (DSPC)-based liposomes. As compared to DSPC alone, all AMs enable liposome formation and stabilize their colloidal properties at low incorporation ratios, and the AM's degree of unsaturation and hydrophobe conformation have profound impacts on stability duration. The AM's chemical structures, particularly hydrophobe unsaturation, also impact the rate of hydrophilic drug release. Course-grained molecular dynamics simulations were utilized to better understand the influence of AM structure on lipid properties and potential liposomal stabilization. Results indicate that both hydrophobic domain structure and PEG density can be utilized to fine-tune liposome properties for the desired application. Collectively, AMs demonstrate the potential to simultaneously stabilize and control the release profile of hydrophilic cargo.


Subject(s)
Unilamellar Liposomes , Hydrophobic and Hydrophilic Interactions , Lipids , Macromolecular Substances , Polyethylene Glycols
5.
Biomacromolecules ; 18(2): 363-373, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28026947

ABSTRACT

Kojic acid (KA) is a naturally occurring fungal metabolite that is utilized as a skin-lightener and antibrowning agent owing to its potent tyrosinase inhibition activity. While efficacious, KA's inclination to undergo pH-mediated, thermal-, and photodegradation reduces its efficacy, necessitating stabilizing vehicles. To minimize degradation, poly(carbonate-esters) and polyesters comprised of KA and natural diacids were prepared via solution polymerization methods. In vitro hydrolytic degradation analyses revealed KA release was drastically influenced by polymer backbone composition (e.g., poly(carbonate-ester) vs polyester), linker molecule (aliphatic vs heteroatom-containing), and release conditions (physiological vs skin). Tyrosinase inhibition assays demonstrated that aliphatic KA dienols, the major degradation product under skin conditions, were more potent then KA itself. All dienols were found to be less toxic than KA at all tested concentrations. Additionally, the most lipophilic dienols were statistically more effective than KA at inhibiting melanin biosynthesis in cells. These KA-based polymer systems deliver KA analogues with improved efficacy and cytocompatible profiles, making them ideal candidates for sustained topical treatments in both medical and personal care products.


Subject(s)
Biocompatible Materials/chemistry , Drug Delivery Systems , Melanins/biosynthesis , Melanoma, Experimental/drug therapy , Polymers/administration & dosage , Polymers/chemistry , Pyrones/chemistry , Animals , Cell Survival/drug effects , Melanins/antagonists & inhibitors , Mice , NIH 3T3 Cells , Polymerization , Tumor Cells, Cultured
6.
Magn Reson Chem ; 54(7): 575-83, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26864907

ABSTRACT

A combination of nuclear magnetic resonance (NMR) techniques including, proton NMR, relaxation analysis, two-dimensional nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy, has been used to demonstrate the spatial location of indomethacin within a unimolecular micelle. Understanding the location of drugs within carrier molecules using such NMR techniques can facilitate rational carrier design. In addition, this information provides insight to encapsulation efficiency of different drugs to determine the most efficient system for a particular bioactive. This study demonstrates that drugs loaded by the unimolecular amphiphile under investigation are not necessarily encapsulated but reside or localize to the periphery or interfacial region of the carrier molecule. The results have further implications as to the features of the unimolecular carrier that contribute to drug loading. In addition, evidence of drug retention associated with the unimolecular surfactant is possible in organic media, as well as in an aqueous environment. Such findings have implications for rational carrier design to correlate the carrier features to the drug of interest and indicate the strong retention capabilities of the unimolecular micelle for delivery applications. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Drug Carriers/chemistry , Indomethacin/chemistry , Macromolecular Substances/chemistry , Surface-Active Agents/chemistry , Isomerism , Magnetic Resonance Spectroscopy , Micelles , Molecular Structure , Solvents/chemistry , Structure-Activity Relationship , Water/chemistry
7.
J Control Release ; 219: 355-368, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26423239

ABSTRACT

Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.


Subject(s)
Carbohydrates/chemistry , Drug Delivery Systems , Polymers/chemistry , Animals , Carbohydrates/pharmacology , Humans , Polymers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...