Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 9(8): 220636, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36039280

ABSTRACT

Team lifting is a complex and collective motor task comprising motor and cognitive components. The purpose of this research is to investigate how individual and collective performances are impacted during load transport combined with a cognitive task. Ten dyads performed a first condition in which they transported a load (CC), and a second one in which they transported the load while maintaining a ball on its top (PC). The recovery-rate, amplitude and period of the centre-of-mass (COM) trajectory were computed for the system (dyad + table = PACS). We analysed the forces and moments exerted at each joint of the upper limbs of the participants. We observed a decrease in the overall performance of the dyads during PC: (i) the velocity and amplitude of CoMPACS decreased by 1.7% and 5.8%, respectively, (ii) inter-participant variability of the Moment-Cost-Function and recovery rate decreased by 95%, and 19.2%, respectively during PC. Kinetic synergy analysis showed that the participants reorganized their coordination in the PC. We demonstrated that adding a precision task affects the economy of collective load carriage at the PACS level while the upper-limbs joint moments were better balanced across the paired participants for the PC.

2.
Front Bioeng Biotechnol ; 10: 767914, 2022.
Article in English | MEDLINE | ID: mdl-35299633

ABSTRACT

Quadrupeds and hexapods are known by their ability to adapt their locomotive patterns to their functions in the environment. Computational modeling of animal movement can help to better understand the emergence of locomotive patterns and their body dynamics. Although considerable progress has been made in this subject in recent years, the strengths and limitations of kinematic simulations at the scale of small moving animals are not well understood. In response to this, this work evaluated the effects of modeling uncertainties on kinematic simulations at small scale. In order to do so, a multibody model of a Messor barbarus ant was developed. The model was built from 3D scans coming from X-ray micro-computed tomography. Joint geometrical parameters were estimated from the articular surfaces of the exoskeleton. Kinematic data of a free walking ant was acquired using high-speed synchronized video cameras. Spatial coordinates of 49 virtual markers were used to run inverse kinematics simulations using the OpenSim software. The sensitivity of the model's predictions to joint geometrical parameters and marker position uncertainties was evaluated by means of two Monte Carlo simulations. The developed model was four times more sensitive to perturbations on marker position than those of the joint geometrical parameters. These results are of interest for locomotion studies of small quadrupeds, octopods, and other multi-legged animals.

3.
Sci Rep ; 11(1): 4346, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623094

ABSTRACT

The biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected. Joint torque was also computed to investigate the intra- and inter-subject strategies occurring in response to this. The ability of the subjects to move the whole system like a pendulum appeared rendered obvious through shortened step length and lowered vertical displacements at the center of mass of the system, while energy recovery rate and total mechanical energy remained constant. In parallel, an asymmetry of joint moment vertical amplitude and coupling among individuals in all pairs suggested the emergence of a leader/follower schema. Beyond the 30% threshold of increased load mass, the constraints at the joint level were balanced among individuals leading to a degraded pendulum-like behavior.

4.
PeerJ ; 9: e10664, 2021.
Article in English | MEDLINE | ID: mdl-33575127

ABSTRACT

Ants are well-known for their amazing load carriage performances. Yet, the biomechanics of locomotion during load transport in these insects has so far been poorly investigated. Here, we present a study of the biomechanics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus (Linnaeus, 1767). This species is characterized by a strong intra-colonial size polymorphism with allometric relationships between the different body parts of the workers. In particular, big ants have much larger heads relative to their size than small ants. Their center of mass is thus shifted forward and even more so when they are carrying a load in their mandibles. We investigated the dynamics of the ant center of mass during unloaded and loaded locomotion. We found that during both unloaded and loaded locomotion, the kinetic energy and gravitational potential energy of the ant center of mass are in phase, which is in agreement with what has been described by other authors as a grounded-running gait. During unloaded locomotion, small and big ants do not display the same posture. However, they expend the same amount of mechanical energy to raise and accelerate their center of mass per unit of distance and per unit of body mass. While carrying a load, compared to the unloaded situation, ants seem to modify their locomotion gradually with increasing load mass. Therefore, loaded and unloaded locomotion do not involve discrete types of gait. Moreover, small ants carrying small loads expend less mechanical energy per unit of distance and per unit of body mass and their locomotion thus seem more mechanically efficient.

5.
J Exp Biol ; 223(Pt 3)2020 02 03.
Article in English | MEDLINE | ID: mdl-31836653

ABSTRACT

Ants are famous in the animal kingdom for their amazing load-carrying performance. Yet, the mechanisms that allow these insects to maintain their stability when carrying heavy loads have been poorly investigated. Here, we present a study of the kinematics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus In this species, large ants have larger heads relative to their size than small ants. Hence, their center of mass is shifted forward, and even more so when they are carrying a load in their mandibles. We tested the hypothesis that this could lead to large ants being less statically stable than small ants, thus explaining their lower load-carrying ability. We found that large ants were indeed less statically stable than small ants when walking unloaded, but they were nonetheless able to adjust their stepping pattern to partly compensate for this instability. When ants were walking loaded on the other hand, there was no evidence of different locomotor behaviors in individuals of different sizes. Loaded ants, whatever their size, move too slowly to maintain their balance through dynamic stability. Rather, they seem to do so by clinging to the ground with their hind legs during part of a stride. We show through a straightforward model that allometric relationships have a minor role in explaining the differences in load-carrying ability between large ants and small ants, and that a simple scale effect is sufficient to explain these differences.


Subject(s)
Ants/anatomy & histology , Ants/physiology , Animals , Biomechanical Phenomena , Body Size/physiology , Walking/physiology
6.
Hum Mov Sci ; 66: 327-334, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31146191

ABSTRACT

While the locomotor behavior of humans walking alone, loaded or unloaded, has been extensively studied, the locomotor behavior of humans transporting a load collectively is very poorly documented in the biomechanics literature. Yet, collective carriage is a task commonly performed in sport (CrossFit), military and health care (carriage of an injured person) activities and is a task that raises growing interest in robotics (Cobots). The primary aim of our research was to test the hypothesis that the mechanical cost of locomotion is comparable when two individuals are transporting an object collectively and when they are walking alone. To test this, the movements of ten pairs of individuals walking side by side, separately or while transporting collectively an object, were recorded with a three-dimensional motion analysis system (Vicon©). Our results show a similar pattern in the periodic displacement of the center of mass and in mechanical costs, between individuals walking alone and individuals carrying a load collectively. Moreover, a better pendulum-like behavior was found in the sagittal plane and in 3D for the pairs of individuals carrying an object, which suggests that the saving in mechanical exchanges is higher when two individuals are carrying an object collectively than when they are walking alone. The values of the parameters measured in our experiment could be used as a benchmark for the implementation of collective carriage tasks in robotics.

7.
Gait Posture ; 64: 244-247, 2018 07.
Article in English | MEDLINE | ID: mdl-29945096

ABSTRACT

BACKGROUND: While the locomotor behavior of humans walking alone has been extensively studied, the locomotor behavior of humans transporting a load collectively is very poorly documented in the biomechanics literature. Yet, collective transport could find potential developments in other domains such as rehabilitation and robotics. RESEARCH QUESTION: If collective load transport is made economically one could expect that the center of mass of the ensemble formed by several individuals and the load they carry has the same pendulum-like behavior as a single individual walking alone. The main objective of our study was to assess to what extent this is the case. METHODS: We recorded the 3D kinematics of movement of the body segments of ten dyads formed by two persons carrying a load together in three successive trials. The individuals carried the load, side by side, along a 13 m straight trajectory. Then, the recovery rate of the center of mass of the ensemble formed by the two individuals and the load they carry (i.e. the rate of transfer between potential and kinetic energy) was computed. RESULTS: The values of recovery rate were similar to those found in the literature for individuals walking alone, showing that the external energetic exchanges occurring during collective transport are as efficient as those occurring in single gait. The recovery rate also increased in successive trials, suggesting an improvement of the performance with familiarization. SIGNIFICANCE: Our results demonstrate the ability of humans to collaborate efficiently for carrying a load. The values of recovery rate we found could be used as a benchmark for the control of collaborative robots.


Subject(s)
Gait/physiology , Walking/physiology , Weight-Bearing/physiology , Biomechanical Phenomena , Humans , Male
8.
J Rehabil Med Clin Commun ; 1: 1000009, 2018.
Article in English | MEDLINE | ID: mdl-33884113

ABSTRACT

OBJECTIVE: Gait rehabilitation is a major concern for adults with an intellectual disability or a neuropsychological disorder. This study evaluated a collective task exercise that could complement an individual rehabilitation routine in such individuals. The movements of 3 individuals (2 patients and 1 healthy individual) were measured while walking alone and in pairs. The recovery rate, amplitude and speed of centre of mass of individuals walking alone were measured and compared with the values of the centre of mass of the system formed by pairs of individuals. RESULTS: When individuals were walking alone, all parameter values were lower in the 2 patients than in the healthy individual. When the patients were walking in pairs, their recovery rate decreased, but their speed increased when each of them was paired with a healthy individual. In pairs, the recovery rate and the amplitude of the centre of mass remained the same as when walking alone. CONCLUSION: Gait rehabilitation does not appear to improve when intellectually disabled patients walk in pairs compared with when they walk alone. However, walking with a healthy individual seems to be more efficient.

9.
J Sports Sci ; 36(8): 907-913, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28671851

ABSTRACT

Spontaneous changes of movement patterns may allow to elucidate which criteria influence movement pattern preferences. However, the factors explaining the sit-stand transition in cycling are unclear. This study investigated if biomechanical and/or muscle activation cost functions could predict the power at which the spontaneous sit-stand transition occurs. Twenty-five participants performed an incremental test leading to the sit-to-stand transition, and subsequent randomized pedaling trials at 20 to 120% of the transition power in seated and standing position. A Moment Cost Function based on lower limbs net joint moments and two Electromyographic Cost Functions based on EMG data were defined. All cost functions increased with increasing crank power (p < 0.001) but at different rates in the seated and standing positions. They had lower values in the seated position below the transition power and lower values in the standing position above the transition power (p < 0.05). These results suggest that spontaneous change of position observed in cycling with increasing crank power represents an optimal choice to minimize muscular efforts. These results support the use of simple cost functions to define optimal settings in cycling and to assess the cost of cycling during short-term efforts.


Subject(s)
Bicycling/physiology , Energy Metabolism/physiology , Posture/physiology , Biomechanical Phenomena , Electromyography , Exercise Test , Humans , Lower Extremity/physiology , Male , Movement/physiology , Muscle, Skeletal/physiology , Young Adult
10.
J Sci Med Sport ; 20(6): 611-616, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27889272

ABSTRACT

OBJECTIVES: When compared to seated, the standing position allows the production of higher power outputs during intense cycling. We hypothesized that muscle coordination could explain this advantage. To test this hypothesis, we assessed muscle activity over a wide range of power outputs for both seated and standing cycling positions. DESIGN: Nine lower limb muscle activities from seventeen untrained volunteers were recorded during cycling sequences performed in the seated and the standing positions at power outputs ranging from ∼100 to 700W at 90±5 revolutions-per-minute (RPM). METHODS: Integrated electromyography activity (iEMG), temporal patterns of the EMGs, and muscle synergies were analyzed. RESULTS: Muscle activity was underlain by four muscle synergies in both positions. Muscle synergies were similar in the two positions (Pearson's r=0.929±0.125). The activation patterns of knee and ankle extensor muscles and their associated synergies had different timings in the two positions (differences of ∼2-10% of cycle). No major timing changes were observed with power output (<2% of cycle). Differences in iEMG between the two positions depended strongly on power output in all but the calf muscle (medial gastrocnemius). CONCLUSIONS: The number and structure of the muscle synergies play a minor role in the advantage of using the standing position when cycling at high power-outputs. However, the standing position is favorable in terms of iEMG at power outputs ≳500-600W due to position-dependent modulations of muscle activation levels. These data are important for understanding the determinants of the seat-stand transition in cycling.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Muscle, Skeletal/physiology , Posture/physiology , Adult , Electromyography , Humans , Lower Extremity/physiology , Male , Muscle Strength/physiology
11.
J Sports Sci ; 35(6): 557-564, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27136397

ABSTRACT

The objective of this study is to clarify the functional roles of upper limb muscles during standing and seated cycling when power output increases. We investigated the activity of seven upper limb and trunk muscles using surface electromyography (EMG). Power outputs ranged from ~100-700 W with a pedalling frequency of 90 revolution per minute. Three-dimensional handle and pedal forces were simultaneously recorded. Using non-negative matrix factorisation, we extracted muscle synergies and we analysed the integrated EMG and EMG temporal patterns. Most of the muscles showed tonic activity that became more phasic as power output increased. Three muscle synergies were identified, associated with (i) torso stabilisation, (ii) compensation/generation of trunk accelerations and (iii) upper body weight support. Synergies were similar for seated and standing positions (Pearson's r > 0.7), but synergy #2 (biceps brachii, deltoidus and brachioradialis) was shifted forward during the cycle (~7% of cycle). The activity levels of synergy #1 (latissimus dorsi and erector spinae) and synergy #2 increased markedly above ~500 W (i.e., ~+40-70% and +130-190%) and during periods corresponding to ipsi- and contralateral downstrokes, respectively. Our study results suggest that the upper limb and trunk muscles may play important roles in cycling when high power outputs are required.


Subject(s)
Bicycling/physiology , Muscle, Skeletal/physiology , Posture/physiology , Torso/physiology , Upper Extremity/physiology , Electromyography , Humans , Male , Young Adult
12.
Med Eng Phys ; 38(12): 1489-1494, 2016 12.
Article in English | MEDLINE | ID: mdl-27745875

ABSTRACT

The aim of this study was to determine the distribution of discrete sensors under the footprint for accurate plantar pressure analyses. For this purpose, two different sensor layouts have been tested and compared, to determine which was the most accurate to monitor plantar pressure with wireless devices in research and/or clinical practice. Ten healthy volunteers participated in the study (age range: 23-58 years). The barycenter of pressures (BoP) determined from the plantar pressure system (W-inshoe®) was compared to the center of pressures (CoP) determined from a force platform (AMTI) in the medial-lateral (ML) and anterior-posterior (AP) directions. Then, the vertical ground reaction force (vGRF) obtained from both W-inshoe® and force platform was compared for both layouts for each subject. The BoP and vGRF determined from the plantar pressure system data showed good correlation (SCC) with those determined from the force platform data, notably for the second sensor organization (ML SCC= 0.95; AP SCC=0.99; vGRF SCC=0.91). The study demonstrates that an adjusted placement of removable sensors is key to accurate plantar pressure analyses. These results are promising for a plantar pressure recording outside clinical or laboratory settings, for long time monitoring, real time feedback or for whatever activity requiring a low-cost system.


Subject(s)
Foot , Mechanical Phenomena , Pressure , Adult , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Young Adult
13.
J Exp Biol ; 219(Pt 18): 2920-2927, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27436140

ABSTRACT

We studied in the field the load transport behavior of workers of the polymorphic Mediterranean seed harvester ant Messor barbarus Individual ants used two different methods to transport food items: carrying and dragging. The probability of dragging instead of carrying varied significantly with both the mass of the item transported and its linear dimension. Moreover, the values of item mass and length at which dragging began to occur increased with increasing size of the workers. However, larger ants began dragging at decreasing values of the relative mass represented by the items transported, which reflects different biomechanical constraints resulting from allometric relationships between the different parts of their body. Transport rate was significantly higher in large ants but varied in the same way for workers of different sizes with the relative mass of the item transported. Nevertheless, although large ants were individually more efficient than small ants in transporting food items, the relative transport rate, defined as the ratio of transport rate to the mass of the ant, was higher for small ants than for large ants. Colonies should thus have a greater benefit in investing in small ants than in large ants for the transport of food items. This may explain why the proportion of large ants is so small on the foraging columns of M. barbarus and why large ants are most often employed in colonies for tasks other than transporting food items.

14.
Gait Posture ; 48: 183-188, 2016 07.
Article in English | MEDLINE | ID: mdl-27285478

ABSTRACT

The human is often modeled as a Poly-Articulated Model (PAM) with rigid segments while some authors use a Spring Mass Model (SMM) for modeling locomotion. These two models are considered independent, and the objective of this study was to link them in order to enlighten the origin of the elasticity in locomotion. Using the characteristics of the two models, a theoretical relationship demonstrates that the variation of elastic energy of the SMM equals the variation of the internal kinetic energy minus internal forces work of the PAM. This theoretical relationship was experimentally investigated among 19 healthy participants walking and running on a treadmill. The results showed that the equality is verified except during the double support phase at 0.56ms(-1), at high walking speeds (1.67 and 2.22ms(-1)) or during the aerial phase of running. The formal relationship showed that the global stiffness of the SMM is directly related to the work of the internal forces of the PAM, and thus, to the characteristics of the musculoskeletal system. It also showed the relevance of taking into account the participation of each joint in the global stiffness. Finally, the coordination of internal forces work to produce a global stiffness may be considered as a new criterion of movement optimization for clinical purposes or motion planning for humanoid robots.


Subject(s)
Gait/physiology , Locomotion/physiology , Models, Biological , Biomechanical Phenomena/physiology , Humans , Kinetics , Male , Walking Speed/physiology , Young Adult
15.
J Hum Kinet ; 50: 5-14, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-28149336

ABSTRACT

The aims of this study were to determine if isolated maximum joint torques and joint torques during a maximum polyarticular task (i.e. cycling at maximum power) are correlated despite joint angle and velocity discrepancies, and to assess if an isolated joint-specific torque production capability at slow angular velocity is related to cycling power. Nine cyclists completed two different evaluations of their lower limb maximum joint torques. Maximum Isolated Torques were assessed on isolated joint movements using an isokinetic ergometer and Maximum Pedalling Torques were calculated at the ankle, knee and hip for flexion and extension by inverse dynamics during cycling at maximum power. A correlation analysis was made between Maximum Isolated Torques and respective Maximum Pedalling Torques [3 joints x (flexion + extension)], showing no significant relationship. Only one significant relationship was found between cycling maximum power and knee extension Maximum Isolated Torque (r=0.68, p<0.05). Lack of correlations between isolated joint torques measured at slow angular velocity and the same joint torques involved in a polyarticular task shows that transfers between both are not direct due to differences in joint angular velocities and in mono-articular versus poly articular joint torque production capabilities. However, this study confirms that maximum power in cycling is correlated with slow angular velocity mono-articular maximum knee extension torque.

16.
J Appl Biomech ; 32(2): 140-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26575861

ABSTRACT

Several suggestions on the upper limb involvement in cycling exist but, to date, no study has quantified upper limb kinetics in this task. The aim of this study was to determine how crank power and pedaling position (seated or standing) affect upper limb kinetics. Handlebar loadings and upper limb kinematics were collected from 17 participants performing seated or standing pedaling trials in a random order at 6 crank powers ranging from 20% (112 ± 19 W) to 120% (675 ± 113 W) of their spontaneous sit-to-stand transition power. An inverse dynamics approach was used to compute 3D moments, powers, and works at the wrist, elbow, and shoulder joints. Over 29 parameters investigated, increases in crank power were associated with increases in the magnitudes of 23 and 20 of the kinetic variables assessed in seated and standing positions, respectively. The standing position was associated with higher magnitudes of upper limb kinetics. These results suggest that both upper and lower limbs should be considered in future models to better understand whole body coordination in cycling.


Subject(s)
Bicycling/physiology , Elbow Joint/physiology , Energy Transfer/physiology , Posture/physiology , Shoulder Joint/physiology , Wrist Joint/physiology , Biomechanical Phenomena , Computer Simulation , Humans , Male , Models, Biological , Physical Exertion/physiology , Range of Motion, Articular/physiology , Task Performance and Analysis , Upper Extremity/physiology , Young Adult
17.
J Biomech ; 48(12): 2998-3003, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26298490

ABSTRACT

The purpose of the study was to establish the link between the saddle vertical force and its determinants in order to establish the strategies that could trigger the sit-stand transition. We hypothesized that the minimum saddle vertical force would be a critical parameter influencing the sit-stand transition during cycling. Twenty-five non-cyclists were asked to pedal at six different power outputs from 20% (1.6 ± 0.3 W kg(-1)) to 120% (9.6 ± 1.6 W kg(-1)) of their spontaneous sit-stand transition power obtained at 90 rpm. Five 6-component sensors (saddle tube, pedals and handlebars) and a full-body kinematic reconstruction were used to provide the saddle vertical force and other force components (trunk inertial force, hips and shoulders reaction forces, and trunk weight) linked to the saddle vertical force. Minimum saddle vertical force linearly decreased with power output by 87% from a static position on the bicycle (5.30 ± 0.50 N kg(-1)) to power output=120% of the sit-stand transition power (0.68 ± 0.49 N kg(-1)). This decrease was mainly explained by the increase in instantaneous pedal forces from 2.84 ± 0.58 N kg(-1) to 6.57 ± 1.02 N kg(-1) from 20% to 120% of the power output corresponding to the sit-stand transition, causing an increase in hip vertical forces from -0.17 N kg(-1) to 3.29 N kg(-1). The emergence of strategies aiming at counteracting the elevation of the trunk (handlebars and pedals pulling) coincided with the spontaneous sit-stand transition power. The present data suggest that the large decrease in minimum saddle vertical force observed at high pedal reaction forces might trigger the sit-stand transition in cycling.


Subject(s)
Bicycling/physiology , Mechanical Phenomena , Posture , Biomechanical Phenomena , Foot/physiology , Hip/physiology , Humans , Male , Young Adult
18.
Gait Posture ; 41(1): 240-5, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25455435

ABSTRACT

The aim of this study was to assess the accuracy of a new dimensionless number associating Froude (Nfr) and Strouhal (Str) called Modela-w to induce walking dynamic similarity among humans of different sizes. Nineteen subjects walked in three experimental conditions: (i) constant speed, (ii) similar speed (Nfr) and (iii) similar speed and similar step frequency (Modela-w). The dynamic similarity was evaluated from scale factors computed with anthropometric, temporal, kinematic and kinetic data and from the decrease of the variability of the parameters expressed in their dimensionless form. Over a total of 36 dynamic parameters, dynamic similarity from scale factors was met for 11 (mean r = 0.51), 22 (mean r = 0.52) and 30 (mean r = 0.69) parameters in the first, the second and the third experimental conditions, respectively. Modela-w also reduced the variability of the dimensionless preceding parameters compared to the other experimental conditions. This study shows that the combination of Nfr and Str called Modela-w ensures dynamic similarity between different-sized subjects and allows scientists to impose similar experimental conditions removing all anthropometric effects.


Subject(s)
Biomechanical Phenomena , Walking/physiology , Adolescent , Adult , Female , Humans , Kinetics , Male , Young Adult
19.
J Biomech ; 47(16): 3862-7, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25458580

ABSTRACT

The aim of this study was to test the hypothesis that running at fixed fractions of Froude (Nfr) and Strouhal (Str) dimensionless numbers combinations induce dynamic similarity between humans of different sizes. Nineteen subjects ran in three experimental conditions, (i) constant speed, (ii) similar speed (Nfr) and (iii) similar speed and similar step frequency (Nfr and Str combination). In addition to anthropometric data, temporal, kinematic and kinetic parameters were assessed at each stage to measure dynamic similarity informed by dimensional scale factors and by the decrease of dimensionless mechanical parameter variability. Over a total of 54 dynamic parameters, dynamic similarity from scale factors was met for 16 (mean r=0.51), 32 (mean r=0.49) and 52 (mean r=0.60) parameters in the first, the second and the third experimental conditions, respectively. The variability of the dimensionless preceding parameters was lower in the third condition than in the others. This study shows that the combination of Nfr and Str, computed from the dimensionless energy ratio at the center of gravity (Modela-r) ensures dynamic similarity between different-sized subjects. The relevance of using similar experimental conditions to compare mechanical dimensionless parameters is also proved and will highlight the study of running techniques, or equipment, and will allow the identification of abnormal and pathogenic running patterns. Modela-r may be adapted to study other abilities requiring bounces in human or animal locomotion or to conduct investigations in comparative biomechanics.


Subject(s)
Body Size , Models, Theoretical , Running , Adolescent , Adult , Biomechanical Phenomena , Gravitation , Humans , Kinetics , Locomotion , Young Adult
20.
Med Eng Phys ; 36(11): 1530-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25239287

ABSTRACT

In walking experimental conditions, subjects are sometimes unable to perform two steps on two different forceplates. This leads the authors to develop methods for discerning right and left ground reaction data while they are summed during the double support in walking. The aim of this study is to propose an adaptive transition function that considers the walking speed and ground reaction forces (GRF). A transition function is used to estimate left and right side GRF signals in double support. It includes a shape coefficient adjusted using single support GRF parameters. This shape coefficient is optimized by a non-linear least-square curve-fitting procedure to match the estimated signals with real GRF. A multiple regression is then performed to identify GRF parameters of major importance selected to compute the right and left GRF of the double support. Relative RMSE (RMSER), maximum GRF differences normalized to body mass and differences of center of pressure (CoP) are computed between real and decomposed signals. During double support, RMSER are 6%, 18%, 3.8%, 4.3%, 3%, and 12.3% for anterior force, lateral force, vertical force, frontal moment, sagittal moment and transverse moment, respectively. Maximum GRF differences normalized to body mass are lower than 1N/kg and mean CoP difference is 0.0135 m, when comparing real to decomposed signals during double support. This work shows the accuracy of an adaptive transition function to decompose GRF and moment of right and left sides. This method is especially useful to accurately discern right and left GRF data in single force platform configurations.


Subject(s)
Algorithms , Gait , Mechanical Phenomena , Signal Processing, Computer-Assisted , Walking/physiology , Biomechanical Phenomena , Humans , Models, Biological , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...