Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
mBio ; 14(5): e0135023, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37737591

ABSTRACT

IMPORTANCE: During infection, bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes S. aureus to copper intoxication. In response to zinc starvation, S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.


Subject(s)
Copper , Staphylococcus aureus , Copper/toxicity , Copper/metabolism , Staphylococcus aureus/metabolism , Metals/metabolism , Zinc/metabolism , Bacteria/metabolism
2.
bioRxiv ; 2023 May 31.
Article in English | MEDLINE | ID: mdl-37398167

ABSTRACT

Microorganisms can acquire metal ions in metal-limited environments using small molecules called metallophores. While metals and their importers are essential, metals can also be toxic, and metallophores have limited ability to discriminate metals. The impact of the metallophore-mediated non-cognate metal uptake on bacterial metal homeostasis and pathogenesis remains to be defined. The globally significant pathogen Staphylococcus aureus uses the Cnt system to secrete the metallophore staphylopine in zinc-limited host niches. Here, we show that staphylopine and the Cnt system facilitate bacterial copper uptake, potentiating the need for copper detoxification. During in vivo infection, staphylopine usage increased S. aureus susceptibility to host-mediated copper stress, indicating that the innate immune response can harness the antimicrobial potential of altered elemental abundances in host niches. Collectively, these observations show that while the broad-spectrum metal-chelating properties of metallophores can be advantageous, the host can exploit these properties to drive metal intoxication and mediate antibacterial control. IMPORTANCE: During infection bacteria must overcome the dual threats of metal starvation and intoxication. This work reveals that the zinc-withholding response of the host sensitizes Staphylococcus aureus to copper intoxication. In response to zinc starvation S. aureus utilizes the metallophore staphylopine. The current work revealed that the host can leverage the promiscuity of staphylopine to intoxicate S. aureus during infection. Significantly, staphylopine-like metallophores are produced by a wide range of pathogens, suggesting that this is a conserved weakness that the host can leverage to toxify invaders with copper. Moreover, it challenges the assumption that the broad-spectrum metal binding of metallophores is inherently beneficial to bacteria.

3.
mBio ; 12(1)2021 02 02.
Article in English | MEDLINE | ID: mdl-33531394

ABSTRACT

Zinc is an essential element in all domains of life. Nonetheless, how prokaryotes achieve selective acquisition of zinc from the extracellular environment remains poorly understood. Here, we elucidate a novel mechanism for zinc-binding in AdcA, a solute-binding protein of Streptococcus pneumoniae Crystal structure analyses reveal the two-domain organization of the protein and show that only the N-terminal domain (AdcAN) is necessary for zinc import. Zinc binding induces only minor changes in the global protein conformation of AdcA and stabilizes a highly mobile loop within the AdcAN domain. This loop region, which is conserved in zinc-specific solute-binding proteins, facilitates closure of the AdcAN binding site and is crucial for zinc acquisition. Collectively, these findings elucidate the structural and functional basis of selective zinc uptake in prokaryotes.IMPORTANCE Zinc is an essential nutrient for the virulence of bacterial pathogens such as Streptococcus pneumoniae Many Gram-positive bacteria use a two-domain lipoprotein for zinc acquisition, but how this class of metal-recruiting proteins acquire zinc and interact with the uptake machinery has remained poorly defined. We report the first structure of a two-domain lipoprotein, AdcA from S. pneumoniae, and use computational, spectroscopic, and microbiological approaches to provide new insights into the functional basis of zinc recruitment. Our findings reveal that AdcA employs a novel mechanism for zinc binding that we have termed the "trap-door" mechanism, and we show how the static metal-binding site of the protein, which confers its selectivity for zinc ions, is combined with a dynamic surface element to facilitate zinc recruitment and import into the bacterium. Together, these findings expand our understanding of how bacteria acquire zinc from the environment and provide a foundation for inhibiting this process, through antimicrobial targeting of the dynamic structural elements to block bacterial zinc scavenging.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Bacterial Proteins/physiology , Streptococcus pneumoniae/metabolism , Zinc/metabolism , ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Binding Sites , Molecular Dynamics Simulation , Protein Conformation , Protein Domains
4.
mSystems ; 5(4)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32817386

ABSTRACT

Zinc is an essential nutrient in biological systems due to its structural or catalytic requirement in proteins involved in diverse cellular processes. To meet this cellular demand, microbes must acquire sufficient zinc from their environment. However, many environments have low zinc availability. One of the mechanisms used by bacteria to acquire zinc is through the production of small molecules known as zincophores. Similar to bacterial siderophores used for iron uptake, zincophores are synthesized by the bacterium and exported and then reimported as zincophore-zinc complexes. Thus far, only four zincophores have been described, including two from the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa, in which they play a critical role in zinc acquisition during infection, and one in a soil bacterium. To determine what other microbes may produce zincophores, we used bioinformatic analyses to identify new zincophore biosynthetic gene clusters (BGCs) and predict the diversity of molecules synthesized. Genome neighborhood network analysis identified approximately 250 unique zincophore-producing species from actinobacteria, firmicutes, proteobacteria, and fusobacteria. This indicates that zincophores are produced by diverse bacteria that inhabit a broad range of ecological niches. Many of the BGCs likely produce characterized zincophores, based on similarity to the characterized systems. However, this analysis also identified numerous BGCs that, based on the colocalization of additional modifying enzymes and sequence divergence of the biosynthetic enzymes, are likely to produce unique zincophores. Collectively, these findings provide a comprehensive understanding of the zincophore biosynthetic landscape that will be invaluable for future research on these important small molecules.IMPORTANCE Bacteria must acquire essential nutrients, including zinc, from their environment. For bacterial pathogens, this necessitates overcoming the host metal-withholding response known as nutritional immunity. A novel type of zinc uptake mechanism that involves the bacterial production of a small zinc-scavenging molecule was recently described in the human pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and Yersinia pestis, as well as the soil-associated bacterium Paenibacillus mucilaginosus This suggests that zincophores may be important for zinc acquisition in diverse environments. In this study, we sought to identify other zincophore-producing bacteria using bioinformatics. We identified almost 250 unique zincophore-producing species, including human and animal pathogens, as well as isolates from soil, rhizosphere, plant, and marine habitats. Crucially, we observed diversity at the amino acid and gene organization levels, suggesting that many of these species are producing unique zincophores. Together, our findings highlight the importance of zincophores for a broad array of bacteria living in diverse environments.

5.
J Bacteriol ; 202(9)2020 04 09.
Article in English | MEDLINE | ID: mdl-32071094

ABSTRACT

The host restricts the availability of zinc to prevent infection. To overcome this defense, Staphylococcus aureus and Pseudomonas aeruginosa rely on zincophore-dependent zinc importers. Synthesis of the zincophore staphylopine by S. aureus and its import are both necessary for the bacterium to cause infection. In this study, we sought to elucidate how loss of zincophore efflux impacts bacterial resistance to host-imposed zinc starvation. In culture and during infection, mutants lacking CntE, the staphylopine efflux pump, were more sensitive to zinc starvation imposed by the metal-binding immune effector calprotectin than those lacking the ability to import staphylopine. However, disruption of staphylopine synthesis reversed the enhanced sensitivity phenotype of the ΔcntE mutant to calprotectin, indicating that intracellular toxicity of staphylopine is more detrimental than the impaired ability to acquire zinc. Unexpectedly, intracellular accumulation of staphylopine does not increase the expression of metal importers or alter cellular metal concentrations, suggesting that, contrary to prevailing models, the toxicity associated with staphylopine is not strictly due to intracellular chelation of metals. As P. aeruginosa and other pathogens produce zincophores with similar chemistry, our observations on the crucial importance of zincophore efflux are likely to be broadly relevant.IMPORTANCEStaphylococcus aureus and many other bacterial pathogens rely on metal-binding small molecules to obtain the essential metal zinc during infection. In this study, we reveal that export of these small molecules is critical for overcoming host-imposed metal starvation during infection and prevents toxicity due to accumulation of the metal-binding molecule within the cell. Surprisingly, we found that intracellular toxicity of the molecule is not due to chelation of cellular metals.


Subject(s)
Imidazoles/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism , Zinc/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics
6.
J Bacteriol ; 202(1)2019 12 06.
Article in English | MEDLINE | ID: mdl-31611288

ABSTRACT

The obligate intracellular pathogen Chlamydia trachomatis is a globally significant cause of sexually transmitted bacterial infections and the leading etiological agent of preventable blindness. The first-row transition metal iron (Fe) plays critical roles in chlamydial cell biology, and acquisition of this nutrient is essential for the survival and virulence of the pathogen. Nevertheless, how C. trachomatis acquires Fe from host cells is not well understood, since it lacks genes encoding known siderophore biosynthetic pathways, receptors for host Fe storage proteins, and the Fe acquisition machinery common to many bacteria. Recent studies have suggested that C. trachomatis directly acquires host Fe via the ATP-binding cassette permease YtgABCD. Here, we characterized YtgA, the periplasmic solute binding protein component of the transport pathway, which has been implicated in scavenging Fe(III) ions. The structure of Fe(III)-bound YtgA was determined at 2.0-Å resolution with the bound ion coordinated via a novel geometry (3 Ns, 2 Os [3N2O]). This unusual coordination suggested a highly plastic metal binding site in YtgA capable of interacting with other cations. Biochemical analyses showed that the metal binding site of YtgA was not restricted to interaction with only Fe(III) ions but could bind all transition metal ions examined. However, only Mn(II), Fe(II), and Ni(II) ions bound reversibly to YtgA, with Fe being the most abundant cellular transition metal in C. trachomatis Collectively, these findings show that YtgA is the metal-recruiting component of the YtgABCD permease and is most likely involved in the acquisition of Fe(II) and Mn(II) from host cells.IMPORTANCEChlamydia trachomatis is the most common bacterial sexually transmitted infection in developed countries, with an estimated global prevalence of 4.2% in the 15- to 49-year age group. Although infection is asymptomatic in more than 80% of infected women, about 10% of cases result in serious disease. Infection by C. trachomatis is dependent on the ability to acquire essential nutrients, such as the transition metal iron, from host cells. In this study, we show that iron is the most abundant transition metal in C. trachomatis and report the structural and biochemical properties of the iron-recruiting protein YtgA. Knowledge of the high-resolution structure of YtgA will provide a platform for future structure-based antimicrobial design approaches.


Subject(s)
Antigens, Bacterial/chemistry , Iron-Binding Proteins/chemistry , Iron/metabolism , Antigens, Bacterial/metabolism , Binding Sites , Iron-Binding Proteins/metabolism
7.
PLoS Pathog ; 15(8): e1007957, 2019 08.
Article in English | MEDLINE | ID: mdl-31437249

ABSTRACT

Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences.


Subject(s)
Dietary Supplements , Disease Models, Animal , Lung Diseases/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Virulence/drug effects , Zinc/administration & dosage , Animals , Female , Lung Diseases/drug therapy , Lung Diseases/microbiology , Mice , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/growth & development
8.
Nat Commun ; 10(1): 3067, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31296851

ABSTRACT

WalKR (YycFG) is the only essential two-component regulator in the human pathogen Staphylococcus aureus. WalKR regulates peptidoglycan synthesis, but this function alone does not explain its essentiality. Here, to further understand WalKR function, we investigate a suppressor mutant that arose when WalKR activity was impaired; a histidine to tyrosine substitution (H271Y) in the cytoplasmic Per-Arnt-Sim (PASCYT) domain of the histidine kinase WalK. Introducing the WalKH271Y mutation into wild-type S. aureus activates the WalKR regulon. Structural analyses of the WalK PASCYT domain reveal a metal-binding site, in which a zinc ion (Zn2+) is tetrahedrally-coordinated by four amino acids including H271. The WalKH271Y mutation abrogates metal binding, increasing WalK kinase activity and WalR phosphorylation. Thus, Zn2+-binding negatively regulates WalKR. Promoter-reporter experiments using S. aureus confirm Zn2+ sensing by this system. Identification of a metal ligand recognized by the WalKR system broadens our understanding of this critical S. aureus regulon.


Subject(s)
Bacterial Proteins/metabolism , Histidine Kinase/metabolism , Protein Serine-Threonine Kinases/metabolism , Staphylococcus aureus/metabolism , Zinc/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cations, Divalent/metabolism , Histidine/genetics , Histidine Kinase/chemistry , Histidine Kinase/genetics , Molecular Dynamics Simulation , Mutation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Regulon/genetics , Staphylococcus aureus/genetics , Tyrosine/genetics
9.
Biosensors (Basel) ; 8(4)2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30486256

ABSTRACT

Cell-permeable fluorescent chemosensors (calcein, monochlorobimane, and a recently reported spiropyran-based sensor SP2) have been incorporated into yeast total lipid extract-based liposomes to suppress inherent cell permeability to allow the detection of extracellular Ca2+, GSH, and Zn2+, respectively. The repurposed sensors have enhanced aqueous solubility and the ability to quantitatively measure biologically relevant concentrations of Ca2+ (0.25 mM⁻1 mM), Zn2+ (6.25 µM⁻50 µM), and GSH (0.25 mM⁻1 mM) by fluorescence in aqueous media. In addition, the liposomal sensors are nontoxic to HEK293 cells and have the ability to detect exogenously added Zn2+ (1 mM), Ca2+ (1 mM), or GSH (1 mM) near cells without internalisation. This new sensing platform provides a means to repurpose a range of intracellular fluorescent sensors to specifically detect extracellular analytes, while also improving biocompatibility for overall enhanced use in a wide range of biomedical applications.


Subject(s)
Biosensing Techniques/methods , Liposomes/chemistry , Humans
10.
ACS Appl Mater Interfaces ; 8(20): 12727-32, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27152578

ABSTRACT

Sensing platforms that allow rapid and efficient detection of metal ions would have applications in disease diagnosis and study, as well as environmental sensing. Here, we report the first microstructured optical fiber-based biosensor for the reversible and nanoliter-scale measurement of metal ions. Specifically, a photoswitchable spiropyran Zn(2+) sensor is incorporated within the microenvironment of a liposome attached to microstructured optical fibers (exposed-core and suspended-core microstructured optical fibers). Both fiber-based platforms retains high selectivity of ion binding associated with a small molecule sensor, while also allowing nanoliter volume sampling and on/off switching. We have demonstrated that multiple measurements can be made on a single sample without the need to change the sensor. The ability of the new sensing platform to sense Zn(2+) in pleural lavage and nasopharynx of mice was compared to that of established ion sensing methodologies such as inductively coupled plasma mass spectrometry (ICP-MS) and a commercially available fluorophore (Fluozin-3), where the optical-fiber-based sensor provides a significant advantage in that it allows the use of nanoliter (nL) sampling when compared to ICP-MS (mL) and FluoZin-3 (µL). This work paves the way to a generic approach for developing surface-based ion sensors using a range of sensor molecules, which can be attached to a surface without the need for its chemical modification and presents an opportunity for the development of new and highly specific ion sensors for real time sensing applications.


Subject(s)
Biosensing Techniques/methods , Ions/analysis , Optical Fibers , Zinc/analysis , Animals , Mice
11.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 12): 1459-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26625286

ABSTRACT

Zn(2+) is an essential nutrient for all known forms of life. In the major human pathogen Streptococcus pneumoniae, the acquisition of Zn(2+) is facilitated by two Zn(2+)-specific solute-binding proteins: AdcA and AdcAII. To date, there has been a paucity of structural information on AdcA, which has hindered a deeper understanding of the mechanism underlying pneumococcal Zn(2+) acquisition. Native AdcA consists of two domains: an N-terminal ZnuA domain and a C-terminal ZinT domain. In this study, the ZnuA domain of AdcA was crystallized. The initial crystals of the ZnuA-domain protein were obtained using dried seaweed as a heterogeneous nucleating agent. No crystals were obtained in the absence of the heterogeneous nucleating agent. These initial crystals were subsequently used as seeds to produce diffraction-quality crystals. The crystals diffracted to 2.03 Šresolution and had the symmetry of space group P1. This study demonstrates the utility of heterogeneous nucleation. The solution of the crystal structures will lead to further understanding of Zn(2+) acquisition by S. pneumoniae.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Bacterial Proteins/chemistry , Streptococcus pneumoniae/metabolism , Amino Acid Sequence , Crystallization , Molecular Sequence Data , Protein Structure, Tertiary
12.
Biometals ; 28(3): 509-19, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25836716

ABSTRACT

During infection invading pathogens must acquire all essential nutrients, including first row transition metals, from the host. To combat invaders, the host exploits this fact and restricts the availability of these nutrients using a defense mechanism known as nutritional immunity. While iron sequestration is the most well-known aspect of this defense, recent work has revealed that the host restricts the availability of other essential elements, notably manganese (Mn), during infection. Furthermore, these studies have revealed that the host utilizes multiple strategies that extend beyond metal sequestration to prevent bacteria from obtaining these metals. This review will discuss the mechanisms by which bacteria attempt to obtain the essential first row transition metal ion Mn during infection, and the approaches utilized by the host to prevent this occurrence. In addition, this review will discuss the impact of host-imposed Mn starvation on invading bacteria.


Subject(s)
Bacteria/metabolism , Bacteria/pathogenicity , Manganese/metabolism , Host-Pathogen Interactions , Iron/metabolism
13.
Nat Commun ; 6: 6418, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25731976

ABSTRACT

Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth's crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine metal-accumulation assays, high-resolution structural data and biochemical analyses to show that cadmium toxicity, in Streptococcus pneumoniae, occurs via perturbation of first row transition metal ion homeostasis. We show that cadmium uptake reduces the millimolar cellular accumulation of manganese and zinc, and thereby increases sensitivity to oxidative stress. Despite this, high cellular concentrations of cadmium (~17 mM) are tolerated, with negligible impact on growth or sensitivity to oxidative stress, when manganese and glutathione are abundant. Collectively, this work provides insight into the molecular basis of cadmium toxicity in prokaryotes, and the connection between cadmium accumulation and oxidative stress.


Subject(s)
Cadmium/metabolism , Cadmium/toxicity , Homeostasis/physiology , Models, Molecular , Oxidative Stress/drug effects , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Crystallization , Homeostasis/drug effects , Immunoblotting , Lipoproteins/chemistry , Lipoproteins/metabolism , Magnesium/metabolism , Protein Conformation , Reverse Transcriptase Polymerase Chain Reaction , Zinc/metabolism
14.
PLoS One ; 9(2): e89427, 2014.
Article in English | MEDLINE | ID: mdl-24558498

ABSTRACT

Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA), a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a 'toxic' effect on bacterial pathogens, such as S. pneumoniae.


Subject(s)
Extracellular Space/metabolism , Gene Expression Regulation, Enzymologic/physiology , Manganese/metabolism , Oxidative Stress/physiology , Streptococcus pneumoniae/physiology , Zinc/metabolism , Binding, Competitive/physiology , DNA Primers/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Streptococcus pneumoniae/metabolism , Superoxide Dismutase/metabolism
15.
Mol Microbiol ; 91(4): 834-51, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24428621

ABSTRACT

Streptococcus pneumoniae is a globally significant human pathogen responsible for nearly 1 million deaths annually. Central to the ability of S. pneumoniae to colonize and mediate disease in humans is the acquisition of zinc from the host environment. Zinc uptake in S. pneumoniae occurs via the ATP-binding cassette transporter AdcCB, and, unusually, two zinc-binding proteins, AdcA and AdcAII. Studies have suggested that these two proteins are functionally redundant, although AdcA has remained uncharacterized by biochemical methods. Here we show that AdcA is a zinc-specific substrate-binding protein (SBP). By contrast with other zinc-binding SBPs, AdcA has two zinc-binding domains: a canonical amino-terminal cluster A-I zinc-binding domain and a carboxy-terminal zinc-binding domain, which has homology to the zinc-chaperone ZinT from Gram-negative organisms. Intriguingly, this latter feature is absent from AdcAII and suggests that the two zinc-binding SBPs of S. pneumoniae employ different modalities in zinc recruitment. We further show that AdcAII is reliant upon the polyhistidine triad proteins for zinc in vitro and in vivo. Collectively, our studies suggest that, despite the overlapping roles of the two SBPs in zinc acquisition, they may have unique mechanisms in zinc homeostasis and act in a complementary manner during host colonization.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Homeostasis , Streptococcus pneumoniae/metabolism , Zinc/metabolism , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Binding , Protein Structure, Tertiary , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...