Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Genes Dev ; 38(1-2): 46-69, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38286657

ABSTRACT

Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.


Subject(s)
Head and Neck Neoplasms , Histones , Humans , Histones/metabolism , Lysine/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Methylation , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Genomic Instability/genetics
2.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38076924

ABSTRACT

Approximately 20% of head and neck squamous cell carcinomas (HNSCC) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The first group shows decreased proliferation, genome instability, and increased sensitivity to genotoxic agents, such as PARP1/2 inhibitors. In contrast, the H3K36M HNSCC models with steady H3K27me3 levels do not exhibit these characteristics unless H3K27me3 levels are elevated, either by DNA hypomethylating agents or by inhibiting the H3K27me3 demethylases KDM6A/B. Mechanistically, we found that H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, we found that aberrant H3K27me3 levels induced by H3K36M expression is not a bona fide epigenetic mark in HNSCC since it requires continuous expression of H3K36M to be inherited. Moreover, increased sensitivity of H3K36M HNSCC models to PARP1/2 inhibitors solely depends on the increased H3K27me3 levels. Indeed, aberrantly high H3K27me3 levels decrease BRCA1 and FANCD2-dependent DNA repair, resulting in higher sensitivity to DNA breaks and replication stress. Finally, in support of our in vitro findings, a PARP1/2 inhibitor alone reduce tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a H3K36M HNSCC xenograft model with consistent H3K27me3 levels, a combination of PARP1/2 inhibitors and agents that upregulate H3K27me3 proves to be successful. In conclusion, our findings underscore a delicate balance between H3K36 and H3K27 methylation, essential for maintaining genome stability. This equilibrium presents promising therapeutic opportunities for patients with H3K36me-deficient tumors.

3.
Stem Cell Reports ; 18(11): 2283-2296, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37832538

ABSTRACT

Adult neurogenesis occurs in the mammalian olfactory epithelium to maintain populations of neurons that are vulnerable to injury yet essential for olfaction. Multipotent olfactory basal stem cells are activated by damage, although mechanisms regulating lineage decisions are not understood. Using mouse lesion models, we focused on defining the role of Polycomb repressive complexes (PRCs) in olfactory neurogenesis. PRC2 has a well-established role in developing tissues, orchestrating transcriptional programs via chromatin modification. PRC2 proteins are expressed in olfactory globose basal cells (GBCs) and nascent neurons. Conditional PRC2 loss perturbs lesion-induced neuron production, accompanied by altered histone modifications and misexpression of lineage-specific transcription factors in GBCs. De-repression of Sox9 in PRC2-mutant GBCs is accompanied by increased Bowman's gland production, defining an unrecognized role for PRC2 in regulating gland versus neuron cell fate. Our findings support a model for PRC2-dependent mechanisms promoting sensory neuronal differentiation in an adult neurogenic niche.


Subject(s)
Polycomb Repressive Complex 2 , Smell , Mice , Animals , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Neurogenesis/physiology , Cell Differentiation/physiology , Olfactory Mucosa , Polycomb Repressive Complex 1 , Mammals/metabolism
4.
J Clin Invest ; 133(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37200093

ABSTRACT

During emergency hematopoiesis, hematopoietic stem cells (HSCs) rapidly proliferate to produce myeloid and lymphoid effector cells, a response that is critical against infection or tissue injury. If unresolved, this process leads to sustained inflammation, which can cause life-threatening diseases and cancer. Here, we identify a role of double PHD fingers 2 (DPF2) in modulating inflammation. DPF2 is a defining subunit of the hematopoiesis-specific BAF (SWI/SNF) chromatin-remodeling complex, and it is mutated in multiple cancers and neurological disorders. We uncovered that hematopoiesis-specific Dpf2-KO mice developed leukopenia, severe anemia, and lethal systemic inflammation characterized by histiocytic and fibrotic tissue infiltration resembling a clinical hyperinflammatory state. Dpf2 loss impaired the polarization of macrophages responsible for tissue repair, induced the unrestrained activation of Th cells, and generated an emergency-like state of HSC hyperproliferation and myeloid cell-biased differentiation. Mechanistically, Dpf2 deficiency resulted in the loss of the BAF catalytic subunit BRG1 from nuclear factor erythroid 2-like 2-controlled (NRF2-controlled) enhancers, impairing the antioxidant and antiinflammatory transcriptional response needed to modulate inflammation. Finally, pharmacological reactivation of NRF2 suppressed the inflammation-mediated phenotypes and lethality of Dpf2Δ/Δ mice. Our work establishes an essential role of the DPF2-BAF complex in licensing NRF2-dependent gene expression in HSCs and immune effector cells to prevent chronic inflammation.


Subject(s)
Chromatin , Neoplasms , Mice , Animals , Antioxidants , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Chromatin Assembly and Disassembly , Inflammation/genetics , Gene Expression , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Nat Struct Mol Biol ; 29(11): 1122-1135, 2022 11.
Article in English | MEDLINE | ID: mdl-36344844

ABSTRACT

Resistance to cancer treatment remains a major clinical hurdle. Here, we demonstrate that the CoREST complex is a key determinant of endocrine resistance and ER+ breast cancer plasticity. In endocrine-sensitive cells, CoREST is recruited to regulatory regions co-bound to ERα and FOXA1 to regulate the estrogen pathway. In contrast, during temporal reprogramming towards a resistant state, CoREST is recruited to AP-1 sites. In reprogrammed cells, CoREST favors chromatin opening, cJUN binding to chromatin, and gene activation by controlling SWI/SNF recruitment independently of the demethylase activity of the CoREST subunit LSD1. Genetic and pharmacological CoREST inhibition reduces tumorigenesis and metastasis of endocrine-sensitive and endocrine-resistant xenograft models. Consistently, CoREST controls a gene signature involved in invasiveness in clinical breast tumors resistant to endocrine therapies. Our studies reveal CoREST functions that are co-opted to drive cellular plasticity and resistance to endocrine therapies and tumorigenesis, thus establishing CoREST as a potential therapeutic target for the treatment of advanced breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Nerve Tissue Proteins/metabolism , Chromatin , Carcinogenesis
6.
Front Cell Dev Biol ; 10: 986319, 2022.
Article in English | MEDLINE | ID: mdl-36105358

ABSTRACT

Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.

7.
Nat Cancer ; 3(3): 355-370, 2022 03.
Article in English | MEDLINE | ID: mdl-35301507

ABSTRACT

Ligand-dependent corepressor (LCOR) mediates normal and malignant breast stem cell differentiation. Cancer stem cells (CSCs) generate phenotypic heterogeneity and drive therapy resistance, yet their role in immunotherapy is poorly understood. Here we show that immune-checkpoint blockade (ICB) therapy selects for LCORlow CSCs with reduced antigen processing/presentation machinery (APM) driving immune escape and ICB resistance in triple-negative breast cancer (TNBC). We unveil an unexpected function of LCOR as a master transcriptional activator of APM genes binding to IFN-stimulated response elements (ISREs) in an IFN signaling-independent manner. Through genetic modification of LCOR expression, we demonstrate its central role in modulation of tumor immunogenicity and ICB responsiveness. In TNBC, LCOR associates with ICB clinical response. Importantly, extracellular vesicle (EV) Lcor-messenger RNA therapy in combination with anti-PD-L1 overcame resistance and eradicated breast cancer metastasis in preclinical models. Collectively, these data support LCOR as a promising target for enhancement of ICB efficacy in TNBC, by boosting of tumor APM independently of IFN.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Interferons/pharmacology , Melanoma , Repressor Proteins/therapeutic use , Skin Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Melanoma, Cutaneous Malignant
8.
Nucleic Acids Res ; 49(17): 9768-9782, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34428304

ABSTRACT

Polycomb complexes have traditionally been prescribed roles as transcriptional repressors, though increasing evidence demonstrate they can also activate gene expression. However, the mechanisms underlying positive gene regulation mediated by Polycomb proteins are poorly understood. Here, we show that RING1B, a core component of Polycomb Repressive Complex 1, regulates enhancer-promoter interaction of the bona fide estrogen-activated GREB1 gene. Systematic characterization of RNA:DNA hybrid formation (R-loops), nascent transcription and RNA Pol II activity upon estrogen administration revealed a key role of RING1B in gene activation by regulating R-loop formation and RNA Pol II elongation. We also found that the estrogen receptor alpha (ERα) and RNA are both necessary for full RING1B recruitment to estrogen-activated genes. Notably, RING1B recruitment was mostly unaffected upon RNA Pol II depletion. Our findings delineate the functional interplay between RING1B, RNA and ERα to safeguard chromatin architecture perturbations required for estrogen-mediated gene regulation and highlight the crosstalk between steroid hormones and Polycomb proteins to regulate oncogenic programs.


Subject(s)
Enhancer Elements, Genetic , Estradiol/physiology , Polycomb Repressive Complex 1/metabolism , Promoter Regions, Genetic , R-Loop Structures , Transcriptional Activation , Cell Line , Chromatin/metabolism , Estrogen Receptor alpha/metabolism , Humans , RNA/metabolism
9.
Nat Commun ; 12(1): 1786, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741974

ABSTRACT

The majority of breast cancers express the estrogen receptor (ERα) and agents targeting this pathway represent the main treatment modality. Endocrine therapy has proven successful in the treatment of hormone-responsive breast cancer since its early adoption in the 1940s as an ablative therapy. Unfortunately, therapeutic resistance arises, leading to disease recurrence and relapse. Recent studies increased our understanding in how changes to the chromatin landscape and deregulation of epigenetic factors orchestrate the resistant phenotype. Here, we will discuss how the epigenome is an integral determinant in hormone therapy response and why epigenetic factors are promising targets for overcoming clinical resistance.


Subject(s)
Breast Neoplasms/genetics , Epigenesis, Genetic , Epigenomics/methods , Gene Expression Regulation, Neoplastic , Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Female , Humans , Neoplasm Recurrence, Local , Receptors, Estrogen/metabolism
10.
Clin Cancer Res ; 27(7): 1893-1903, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33495312

ABSTRACT

PURPOSE: In preclinical studies, the lysine-specific histone demethylase 1A (LSD1) inhibitor tranylcypromine (TCP) combined with all-trans retinoic acid (ATRA) induces differentiation and impairs survival of myeloid blasts in non-acute promyelocytic leukemia acute myeloid leukemia (AML). We conducted a phase I clinical trial (NCT02273102) to evaluate the safety and activity of ATRA plus TCP in patients with relapsed/refractory AML and myelodysplasia (MDS). PATIENTS AND METHODS: Seventeen patients were treated with ATRA and TCP (three dose levels: 10 mg twice daily, 20 mg twice daily, and 30 mg twice daily). RESULTS: ATRA-TCP had an acceptable safety profile. The MTD of TCP was 20 mg twice daily. Best responses included one morphologic leukemia-free state, one marrow complete remission with hematologic improvement, two stable disease with hematologic improvement, and two stable disease. By intention to treat, the overall response rate was 23.5% and clinical benefit rate was 35.3%. Gene expression profiling of patient blasts showed that responding patients had a more quiescent CD34+ cell phenotype at baseline, including decreased MYC and RARA expression, compared with nonresponders that exhibited a more proliferative CD34+ phenotype, with gene expression enrichment for cell growth signaling. Upon ATRA-TCP treatment, we observed significant induction of retinoic acid-target genes in responders but not nonresponders. We corroborated this in AML cell lines, showing that ATRA-TCP synergistically increased differentiation capacity and cell death by regulating the expression of key gene sets that segregate patients by their clinical response. CONCLUSIONS: These data indicate that LSD1 inhibition sensitizes AML cells to ATRA and may restore ATRA responsiveness in subsets of patients with MDS and AML.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Histone Demethylases/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Transcriptome , Tranylcypromine/administration & dosage , Tretinoin/administration & dosage , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Tretinoin/adverse effects
11.
Sci Adv ; 6(23): eaaz7249, 2020 06.
Article in English | MEDLINE | ID: mdl-32548262

ABSTRACT

RING1B, a core Polycomb repressive complex 1 subunit, is a histone H2A ubiquitin ligase essential for development. RING1B is overexpressed in patients with luminal breast cancer (BC) and recruited to actively transcribed genes and enhancers co-occupied by the estrogen receptor α (ERα). Whether ERα-induced transcriptional programs are mediated by RING1B is not understood. We show that prolonged estrogen administration induces transcriptional output and chromatin landscape fluctuations. RING1B loss impairs full estrogen-mediated gene expression and chromatin accessibility for key BC transcription factors. These effects were mediated, in part, by RING1B enzymatic activity and nucleosome binding functions. RING1B is recruited in a cyclic manner to ERα, FOXA1, and GRHL2 cobound sites and regulates estrogen-induced enhancers and ERα recruitment. Last, ChIP exo revealed multiple binding events of these factors at single-nucleotide resolution, including RING1B occupancy approximately 10 base pairs around ERα bound sites. We propose RING1B as a key regulator of the dynamic, liganded-ERα transcriptional regulatory circuit in luminal BC.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Chromatin/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Polycomb Repressive Complex 1/metabolism
13.
PLoS Pathog ; 15(12): e1008221, 2019 12.
Article in English | MEDLINE | ID: mdl-31881074

ABSTRACT

Kaposi's sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). Unanswered questions regarding KS are its cellular ontology and the conditions conducive to viral oncogenesis. We identify PDGFRA(+)/SCA-1(+) bone marrow-derived mesenchymal stem cells (Pα(+)S MSCs) as KS spindle-cell progenitors and found that pro-angiogenic environmental conditions typical of KS are critical for KSHV sarcomagenesis. This is because growth in KS-like conditions generates a de-repressed KSHV epigenome allowing oncogenic KSHV gene expression in infected Pα(+)S MSCs. Furthermore, these growth conditions allow KSHV-infected Pα(+)S MSCs to overcome KSHV-driven oncogene-induced senescence and cell cycle arrest via a PDGFRA-signaling mechanism; thus identifying PDGFRA not only as a phenotypic determinant for KS-progenitors but also as a critical enabler for viral oncogenesis.


Subject(s)
Mesenchymal Stem Cells/virology , Neovascularization, Pathologic/virology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Sarcoma, Kaposi/virology , Animals , Carcinogenesis/metabolism , Gene Expression/physiology , Herpesvirus 8, Human/genetics , Mesenchymal Stem Cells/cytology , Mice , Signal Transduction/physiology
14.
Trends Biochem Sci ; 44(8): 688-700, 2019 08.
Article in English | MEDLINE | ID: mdl-31085088

ABSTRACT

Polycomb-group (PcG) complexes are multiprotein, evolutionarily conserved epigenetic machineries that regulate stem cell fate decisions and development, and are also implicated in cancer and other maladies. The PcG machinery can be divided into two major complexes: Polycomb repressive complex 1 and 2 (PRC1 and PRC2). Traditionally, PcG complexes have been associated with maintenance of gene repression mainly via histone-modifying activities. However, during the last years, increasing evidence indicates that the PcG complexes can also positively regulate gene transcription and modify non-histone substrates in multiple biological processes, cellular stages, and cancers. In this review, we will illustrate recent findings in PcG-mediated gene regulation, with special focus on the recently described non-classical functions of PcG complexes in stem cells and cancer.


Subject(s)
Polycomb-Group Proteins/chemistry , Polycomb-Group Proteins/metabolism , Amino Acid Sequence , Binding Sites , Gene Expression Regulation , Histones/chemistry , Humans , Neoplasms/genetics , Neoplasms/metabolism , Polycomb-Group Proteins/genetics , Protein Conformation , Protein Processing, Post-Translational , Stem Cells/drug effects , Stem Cells/metabolism
15.
Proc Natl Acad Sci U S A ; 116(14): 7005-7014, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30877256

ABSTRACT

p27 shifts from CDK inhibitor to oncogene when phosphorylated by PI3K effector kinases. Here, we show that p27 is a cJun coregulator, whose assembly and chromatin association is governed by p27 phosphorylation. In breast and bladder cancer cells with high p27pT157pT198 or expressing a CDK-binding defective p27pT157pT198 phosphomimetic (p27CK-DD), cJun is activated and interacts with p27, and p27/cJun complexes localize to the nucleus. p27/cJun up-regulates TGFB2 to drive metastasis in vivo. Global analysis of p27 and cJun chromatin binding and gene expression shows that cJun recruitment to many target genes is p27 dependent, increased by p27 phosphorylation, and activates programs of epithelial-mesenchymal transformation and metastasis. Finally, human breast cancers with high p27pT157 differentially express p27/cJun-regulated genes of prognostic relevance, supporting the biological significance of the work.


Subject(s)
Cell Movement , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Cell Adhesion , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-jun/genetics
16.
Nat Commun ; 9(1): 3377, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30139998

ABSTRACT

Polycomb repressive complex 1 (PRC1) plays essential roles in cell fate decisions and development. However, its role in cancer is less well understood. Here, we show that RNF2, encoding RING1B, and canonical PRC1 (cPRC1) genes are overexpressed in breast cancer. We find that cPRC1 complexes functionally associate with ERα and its pioneer factor FOXA1 in ER+ breast cancer cells, and with BRD4 in triple-negative breast cancer cells (TNBC). While cPRC1 still exerts its repressive function, it is also recruited to oncogenic active enhancers. RING1B regulates enhancer activity and gene transcription not only by promoting the expression of oncogenes but also by regulating chromatin accessibility. Functionally, RING1B plays a divergent role in ER+ and TNBC metastasis. Finally, we show that concomitant recruitment of RING1B to active enhancers occurs across multiple cancers, highlighting an under-explored function of cPRC1 in regulating oncogenic transcriptional programs in cancer.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Polycomb Repressive Complex 1/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Breast Neoplasms/pathology , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Datasets as Topic , Female , Gene Expression Profiling , HEK293 Cells , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Mice , Oncogenes/genetics , Polycomb Repressive Complex 1/genetics , Xenograft Model Antitumor Assays
17.
Nat Commun ; 8(1): 1235, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29089522

ABSTRACT

Polycomb group proteins (PcG) are transcriptional repressors that control cell identity and development. In mammals, five different CBX proteins associate with the core Polycomb repressive complex 1 (PRC1). In mouse embryonic stem cells (ESCs), CBX6 and CBX7 are the most highly expressed CBX family members. CBX7 has been recently characterized, but little is known regarding the function of CBX6. Here, we show that CBX6 is essential for ESC identity. Its depletion destabilizes the pluripotency network and triggers differentiation. Mechanistically, we find that CBX6 is physically and functionally associated to both canonical PRC1 (cPRC1) and non-canonical PRC1 (ncPRC1) complexes. Notably, in contrast to CBX7, CBX6 is recruited to chromatin independently of H3K27me3. Taken together, our findings reveal that CBX6 is an essential component of ESC biology that contributes to the structural and functional complexity of the PRC1 complex.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling , Mouse Embryonic Stem Cells/metabolism , Polycomb-Group Proteins/genetics , Animals , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/metabolism , RNA Interference
18.
Nat Commun ; 8: 15456, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28593990

ABSTRACT

ASXL2 is frequently mutated in acute myeloid leukaemia patients with t(8;21). However, the roles of ASXL2 in normal haematopoiesis and the pathogenesis of myeloid malignancies remain unknown. Here we show that deletion of Asxl2 in mice leads to the development of myelodysplastic syndrome (MDS)-like disease. Asxl2-/- mice have an increased bone marrow (BM) long-term haematopoietic stem cells (HSCs) and granulocyte-macrophage progenitors compared with wild-type controls. Recipients transplanted with Asxl2-/- and Asxl2+/- BM cells have shortened lifespan due to the development of MDS-like disease or myeloid leukaemia. Paired daughter cell assays demonstrate that Asxl2 loss enhances the self-renewal of HSCs. Deletion of Asxl2 alters the expression of genes critical for HSC self-renewal, differentiation and apoptosis in Lin-cKit+ cells. The altered gene expression is associated with dysregulated H3K27ac and H3K4me1/2. Our study demonstrates that ASXL2 functions as a tumour suppressor to maintain normal HSC function.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/pathology , Myeloid Cells/metabolism , Repressor Proteins/deficiency , Animals , Cell Lineage , Cell Self Renewal , Disease Progression , Gene Deletion , Gene Expression Regulation, Leukemic , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Histones/metabolism , Leukemia, Myeloid, Acute/genetics , Lysine/metabolism , Mice , Myelodysplastic Syndromes/genetics , Myeloid Cells/pathology , Protein Processing, Post-Translational , Repressor Proteins/metabolism , Transcription, Genetic
19.
Nature ; 544(7648): 59-64, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28289288

ABSTRACT

The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. The technique enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination of single-cell genome structure provides a new approach for investigating biological processes.


Subject(s)
Chromatin Assembly and Disassembly , Genome , Molecular Imaging/methods , Nucleosomes/chemistry , Single-Cell Analysis/methods , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , Enhancer Elements, Genetic , G1 Phase , Gene Expression Regulation , Gene Regulatory Networks , Genome/genetics , Haploidy , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Models, Molecular , Molecular Conformation , Molecular Imaging/standards , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Reproducibility of Results , Single-Cell Analysis/standards , Cohesins
20.
Appl Microbiol Biotechnol ; 100(23): 10137-10146, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27687996

ABSTRACT

Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity-throughout the different stages of the feeding process with methanol and acetate-was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.


Subject(s)
Archaea/classification , Archaea/metabolism , Bioreactors/microbiology , Methane/metabolism , Methanol/metabolism , Sewage/microbiology , Acetates/metabolism , Anaerobiosis , Archaea/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , High-Throughput Nucleotide Sequencing , Hydrogen/metabolism , Oxidoreductases/genetics , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...