Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
ACS Omega ; 4(3): 5852-5861, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459735

ABSTRACT

The metal-support interaction plays an important role in gold catalysis. We employ here crystalline cubic (α-) and hexagonal (ß-) phases of heterometallic fluoride NaYF4 nanoparticles (NPs), obtained by the decomposition of a single source precursor [NaY(TFA)4(diglyme)] (TFA = trifluoroacetate), as nonoxide supports for gold catalysts. Using an isostructural gadolinium analogue, we also obtained doped α-NaYF4:Gd3+ and ß-NaYF4:Gd3+ NPs. A successful deposition of ∼1% by weight gold NPs of average size 5-6.5 nm on these doped and undoped metal fluorides using HAuCl4·3H2O afforded Au/NaYF4 catalysts which were thoroughly characterized by using several physicochemical techniques such as X-ray diffraction, Brunauer-Emmett-Teller analysis, high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy. A comparative study of the above catalysts for different oxidation reactions show that while for the aerobic oxidation of trans-stilbene in solution phase, they are either better (in terms of stilbene conversion) or at par (in terms of trans-stilbene oxide yield) in comparison to the reference catalyst Au/TiO2 of the World Gold Council, their activity toward CO oxidation reactions in gas phase remains much less than that of gold catalysts supported on metal oxides.

2.
Sci Technol Adv Mater ; 20(1): 557-567, 2019.
Article in English | MEDLINE | ID: mdl-31258823

ABSTRACT

Complex intermetallic compounds such as transition metal (TM) aluminides are promising alternatives to expensive Pd-based catalysts, in particular for the semi-hydrogenation of alkynes or alkadienes. Here, we compare the gas-phase butadiene hydrogenation performances of o-Al13Co4(100), m-Al13Fe4(010) and m-Al13Ru4(010) surfaces, whose bulk terminated structural models exhibit similar cluster-like arrangements. Moreover, the effect of the surface orientation is assessed through a comparison between o-Al13Co4(100) and o-Al13Co4(010). As a result, the following room-temperature activity order is determined: Al13Co4(100) < Al13Co4(010) < Al13Ru4(010) < Al13Fe4(010). Moreover, Al13Co4(010) is found to be the most active surface at 110°C, and even more selective to butene (100%) than previously investigated Al13Fe4(010). DFT calculations show that the activity and selectivity results can be rationalized through the determination of butadiene and butene adsorption energies; in contrast, hydrogen adsorption energies do not scale with the catalytic activities. Moreover, the calculation of projected densities of states provides an insight into the Al13TM4 surface electronic structure. Isolating the TM active centers within the Al matrix induces a narrowing of the TM d-band, which leads to the high catalytic performances of Al13TM4 compounds.

3.
Nanoscale ; 11(14): 6897-6904, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30912782

ABSTRACT

Atomically dispersed metals promise the ultimate catalytic efficiency, but their stabilization onto suitable supports remains challenging owing to their aggregation tendency. Focusing on the industrially-relevant Pt/γ-Al2O3 catalyst, in situ X-ray absorption spectroscopy and environmental scanning transmission electron microscopy allow us to monitor the stabilization of Pt single atoms under O2 atmosphere, as well as their aggregation into mobile reduced subnanometric clusters under H2. Density functional theory calculations reveal that oxygen from the gas phase directly contributes to metal-support adhesion, maximal for single Pt atoms, whereas hydrogen only adsorbs on Pt, and thereby leads to Pt clustering. Finally, Pt cluster mobility is shown to be activated at low temperature and high H2 pressure. Our results highlight the crucial importance of the reactive atmosphere on the stability of single-atom versus cluster catalysts.

4.
J Colloid Interface Sci ; 524: 427-433, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29677611

ABSTRACT

The local structure and the thermal stability of small and well-dispersed RhHx nanoparticles (average size of 1.4 nm) were studied by in situ X-ray Absorption Spectroscopy. The RhHx nanoparticles are stable at room temperature and undergo a structural transition from hydride (fcc) to metal phase (fcc) with a shrinking of the lattice volume due to the desorption of hydrogen. This phase transition occurs in the temperature range of 150-180 °C, in good agreement with the results from thermo-desorption spectroscopy. Above 180 °C, the desorbed nanoparticles undertake important coalescence. In situ transmission electron microscopy performed up to 300 °C proves that this process cannot be only thermal, thus it may be ascribed to a X-ray beam effect.

5.
Phys Chem Chem Phys ; 17(42): 28112-20, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-25765742

ABSTRACT

Au, Rh, Pd, Au-Rh and Au-Pd nanoparticles (NPs) were synthesized by colloidal chemical reduction and immobilized on hydrothermally-prepared rutile titania nanorods. The catalysts were characterized by aberration-corrected TEM/STEM, XPS, and FTIR, and were evaluated in the hydrogenation of tetralin in the presence of H2S. Oxidizing and reducing thermal treatments were employed to remove the polyvinyl alcohol (PVA) surfactant. Reduction in H2 at 350 °C was found efficient for removing the PVA while preserving the size (ca. 3 nm), shape and bimetallic nature of the NPs. While Au-Pd NPs are alloyed at the atomic scale, Au-Rh NPs contain randomly distributed single-phase domains. Calcination-reduction of Au-Rh NPs mostly leads to separated Au and Rh NPs, while pre-reduction generates a well-defined segregated structure with Rh located at the interface between Au and TiO2 and possibly present around the NPs as a thin overlayer. Both the titania support and gold increase the resistance of Rh and Pd to oxidation. Furthermore, although detrimental to tetralin hydrogenation initial activity, gold stabilizes the NPs against surface sulfidation in the presence of 50 ppm H2S, leading to increased catalytic performances of the Au-Rh and Au-Pd systems as compared to their Rh and Pd counterparts.

6.
Rev Sci Instrum ; 84(9): 094101, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089839

ABSTRACT

A small-volume reaction cell for catalytic or photocatalytic testing of solid materials at pressures up to 1000 Torr has been coupled to a surface-science setup used for standard sample preparation and characterization under ultrahigh vacuum (UHV). The reactor and sample holder designs allow easy sample transfer from/to the UHV chamber, and investigation of both planar and small amounts of powder catalysts under the same conditions. The sample is heated with an infrared laser beam and its temperature is measured with a compact pyrometer. Combined in a regulation loop, this system ensures fast and accurate temperature control as well as clean heating. The reaction products are automatically sampled and analyzed by mass spectrometry and/or gas chromatography (GC). Unlike previous systems, our GC apparatus does not use a recirculation loop and allows working in clean conditions at pressures as low as 1 Torr while detecting partial pressures smaller than 10(-4) Torr. The efficiency and versatility of the reactor are demonstrated in the study of two catalytic systems: butadiene hydrogenation on Pd(100) and CO oxidation over an AuRh/TiO2 powder catalyst.

7.
Chem Commun (Camb) ; 49(76): 8507-9, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23942629

ABSTRACT

We report an original and scalable synthesis pathway to produce encapsulated gold nanoparticles. Precise control of the gold particles is achieved in the range of 1-10 nm through the impregnation of silicalite-1 with a controlled concentration of gold solution, followed by dissolution-recrystallization of the zeolite.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size , Surface Properties , Zeolites/chemistry
8.
Faraday Discuss ; 138: 241-56; discussion 317-35, 433-4, 2008.
Article in English | MEDLINE | ID: mdl-18447019

ABSTRACT

Bimetallic clusters, all containing gold, have been produced by laser vaporisation of bulk alloys followed by deposition of the formed clusters onto Al2O3 and TiO2 powders or flat silica supports. This technique allows a narrow size distribution of highly dispersed gold-based nanoparticles on powders and nanocrystalline structured thin films on 2D supports to be obtained. The catalytic performances of the as-obtained AuFe, AuNi, AuTi powdery catalysts have been studied in the PROX reaction and compared with those obtained in the oxidation of CO in the temperature range 25-300 degrees C. By comparing the activities of the different catalysts, it is concluded that the nature of the gold partner directly affects the activity of gold. The following tendency is observed: AuFe and AuNi have rather similar activities, significantly lower than that of AuTi. In this paper, we also present a first attempt to study reactivity of original self-supported systems. We show that significant CO oxidation reactivity can be obtained over unsupported nanoporous AuTi and PdAu thin films. By completely excluding the support effect, unsupported catalysts could provide a way of understanding the relevant catalytic mechanisms more easily.

9.
Chem Commun (Camb) ; (2): 186-8, 2007 Jan 14.
Article in English | MEDLINE | ID: mdl-17180241

ABSTRACT

The gold reference catalyst Au/TiO(2) exhibits high activity in the stereoselective epoxidation of trans-stilbene in methylcyclohexane in the presence of 5 mol% TBHP, by taking part in a chain reaction involving the activation of molecular oxygen by a radical produced from methylcyclohexane.

10.
Chem Commun (Camb) ; (3): 388-90, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15645047

ABSTRACT

The intimate mixture of a skeletal gold structure with ZrO2 nanoparticles obtained simply by oxidation of Au(0.5)Zr(0.5) alloy at room temperature turns out to be an efficient catalyst for the selective oxidation of CO in the presence of hydrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...