Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Children (Basel) ; 10(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38002858

ABSTRACT

The brain is traditionally viewed as an immunologically privileged site; however, there are known to be multiple resident immune cells that influence the CNS environment and are reactive to extra-CNS signaling. Microglia are an important component of this system, which influences early neurodevelopment in addition to modulating inflammation and regenerative responses to injury and infection. Microglia are influenced by gut microbiome-derived metabolites, both as part of their normal function and potentially in pathological patterns that may induce neurodevelopmental disabilities or behavioral changes. This review aims to summarize the mounting evidence indicating that, not only is the Gut-Brain axis mediated by metabolites and microglia throughout an organism's lifetime, but it is also influenced prenatally by maternal microbiome and diet, which holds implications for both early neuropathology and neurodevelopment.

2.
Nutrients ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299543

ABSTRACT

Short bowel syndrome (SBS) is a condition that results from a reduction in the length of the intestine or its functional capacity. SBS patients can have significant side effects and complications, the etiology of which remains ill-defined. Thus, facilitating intestinal adaptation in SBS remains a major research focus. Emerging data supports the role of the gut microbiome in modulating disease progression. There has been ongoing debate on defining a "healthy" gut microbiome, which has led to many studies analyzing the bacterial composition and shifts that occur in gastrointestinal disease states such as SBS and the resulting systemic effects. In SBS, it has also been found that microbial shifts are highly variable and dependent on many factors, including the anatomical location of bowel resection, length, and structure of the remnant bowel, as well as associated small intestinal bacterial overgrowth (SIBO). Recent data also notes a bidirectional communication that occurs between enteric and central nervous systems called the gut-brain axis (GBA), which is regulated by the gut microbes. Ultimately, the role of the microbiome in disease states such as SBS have many clinical implications and warrant further investigation. The focus of this review is to characterize the role of the gut microbiota in short bowel syndrome and its impact on the GBA, as well as the therapeutic potential of altering the microbiome.


Subject(s)
Gastrointestinal Microbiome , Short Bowel Syndrome , Humans , Short Bowel Syndrome/complications , Gastrointestinal Microbiome/physiology , Brain-Gut Axis , Intestine, Small/microbiology , Bacteria , Dysbiosis/microbiology
3.
Nutrients ; 14(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36364922

ABSTRACT

Short bowel syndrome (SBS) is a particularly serious condition in which the small intestine does not absorb sufficient nutrients for biological needs, resulting in severe illness and potentially death if not treated. Given the important role of the gut in many signaling cascades throughout the body, SBS results in disruption of many pathways and imbalances in various hormones. Due to the inability to meet sufficient nutritional needs, an intravenous form of nutrition, total parental nutrition (TPN), is administered. However, TPN presents difficulties such as severe liver injury and altered signaling secondary to the continued lack of luminal contents. This manuscript aims to summarize relevant studies into the systemic effects of TPN on systems such as the gut-brain, gut-lung, and gut-liver axis, as well as present novel therapeutics currently under use or investigation as mitigation strategies for TPN induced injury.


Subject(s)
Short Bowel Syndrome , Animals , Humans , Short Bowel Syndrome/complications , Short Bowel Syndrome/therapy , Short Bowel Syndrome/metabolism , Disease Models, Animal , Parenteral Nutrition, Total , Intestine, Small/metabolism , Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...