Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785938

ABSTRACT

The adsorption kinetics of human serum albumin (HSA) on bare and poly-L-arginine (PARG)-modified silica substrates were investigated using reflectometry and atomic force microscopy (AFM). Measurements were carried out at various pHs, flow rates and albumin concentrations in the 10 and 150 mM NaCl solutions. The mass transfer rate constants and the maximum protein coverages were determined for the bare silica at pH 4.0 and theoretically interpreted in terms of the hybrid random sequential adsorption model. These results were used as reference data for the analysis of adsorption kinetics at larger pHs. It was shown that the adsorption on bare silica rapidly decreased with pH and became negligible at pH 7.4. The albumin adsorption on PARG-functionalized silica showed an opposite trend, i.e., it was negligible at pH 4 and attained maximum values at pH 7.4 and 150 mM NaCl, the conditions corresponding to the blood serum environment. These results were interpreted as the evidence of a significant role of electrostatic interactions in the albumin adsorption on the bare and PARG-modified silica. It was also argued that our results can serve as useful reference data enabling a proper interpretation of protein adsorption on substrates functionalized by polyelectrolytes.


Subject(s)
Polyelectrolytes , Serum Albumin , Silicon Dioxide , Silicon Dioxide/chemistry , Adsorption , Humans , Kinetics , Hydrogen-Ion Concentration , Serum Albumin/chemistry , Polyelectrolytes/chemistry , Polyamines/chemistry , Peptides/chemistry , Microscopy, Atomic Force , Serum Albumin, Human/chemistry
2.
Langmuir ; 40(15): 7907-7919, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578865

ABSTRACT

Deposition kinetics of polymer particles characterized by a prolate spheroid shape on gold sensors modified by the adsorption of poly(allylamine) was investigated using a quartz crystal microbalance and atomic force microscopy. Reference measurements were also performed for polymer particles of a spherical shape and the same diameter as the spheroid shorter axis. Primarily, the frequency and dissipation shifts for various overtones were measured as a function of time. These kinetic data were transformed into the dependence of the complex impedance, scaled up by the inertia impedance, upon the particle size to the hydrodynamic boundary layer ratio. The results obtained for low particle coverage were interpolated, which enabled the derivation of Sauerbrey-like equations, yielding the real particle coverage using the experimental frequency or dissipation (bandwidth) shifts. Experiments carried out for a long deposition time confirmed that, for spheroids, the imaginary and real impedance components were equal to each other for all overtones and for a large range of particle coverage. This result was explained in terms of a hydrodynamic, lubrication-like contact of particles with the sensor, enabling their sliding motion. In contrast, the experimental data obtained for spheres, where the impedance ratio was a complicated function of overtones and particle coverage, showed that the contact was rather stiff, preventing their motion over the sensor. It was concluded that results obtained in this work can be exploited as useful reference systems for a quantitative interpretation of bioparticle, especially bacteria, deposition kinetics on macroion-modified surfaces.

3.
Phys Chem Chem Phys ; 25(27): 18182-18196, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37387688

ABSTRACT

We show by extensive experimental characterization combined with molecular simulations that pH has a major impact on the assembly mechanism and properties of poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) complexes. A combination of dynamic light scattering (DLS) and laser Doppler velocimetry (LDV) is used to assess the complexation, charge state, and other physical characteristics of the complexes, isothermal titration calorimetry (ITC) is used to examine the complexation thermodynamics, and circular dichroism (CD) is used to extract the polypeptides' secondary structure. For enhanced analysis and interpretation of the data, analytical ultracentrifugation (AUC) is used to define the precise molecular weights and solution association of the peptides. Molecular dynamics simulations reveal the associated intra- and intermolecular binding changes in terms of intrinsic vs. extrinsic charge compensation, the role of hydrogen bonding, and secondary structure changes, aiding in the interpretation of the experimental data. We combine the data to reveal the pH dependency of PLL/PGA complexation and the associated molecular level mechanisms. This work shows that not only pH provides a means to control complex formation but also that the associated changes in the secondary structure and binding conformation can be systematically used to control materials assembly. This gives access to rational design of peptide materials via pH control.


Subject(s)
Glutamic Acid , Polylysine , Polylysine/chemistry , Peptides/chemistry , Protein Structure, Secondary , Hydrogen-Ion Concentration , Circular Dichroism
4.
Anal Chem ; 94(28): 10234-10244, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35776925

ABSTRACT

Deposition kinetics of positively charged polymer microparticles, characterized by prolate spheroid shape, at silica and gold sensors was investigated using the quartz microbalance (QCM) technique. Reference measurements were also performed for positively charged polymer particles of spherical shape and the same mass as the spheroids. Primarily, the frequency and bandwidth shifts for various overtones were measured as a function of time. It is shown that the ratio of these signals is close to unity for all overtones. These results were converted to the dependence of the frequency shift on the particle coverage, directly determined by atomic force microscopy and theoretically interpreted in terms of the hydrodynamic model. A quantitative agreement with experiments was attained considering particle slip relative to the ambient oscillating flow. In contrast, the theoretical results pertinent to the rigid contact model proved inadequate. The particle deposition kinetics derived from the QCM method was compared with theoretical modeling performed according to the random sequential adsorption approach. This allowed to assess the feasibility of the QCM technique to furnish proper deposition kinetics for anisotropic particles. It is argued that the hydrodynamic slip effect should be considered in the interpretation of QCM kinetic results acquired for bioparticles, especially viruses.


Subject(s)
Hydrodynamics , Quartz Crystal Microbalance Techniques , Kinetics , Polymers , Surface Properties
5.
Adv Colloid Interface Sci ; 302: 102630, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35313169

ABSTRACT

Mechanisms and kinetic of particle deposition at solid surfaces leading to the formation of self-assembled layers of controlled structure and density were reviewed. In the first part theoretical aspects were briefly discussed, comprising limiting analytical solutions for the linear transport under flow and diffusion. Methods of the deposition kinetics analysis for non-linear regimes affected by surface blocking were also considered. Characteristic monolayer formation times under diffusion and flow for the nanoparticle size range were calculated. In the second part illustrative experimental results obtained for micro- and nanoparticles were discussed. Deposition at planar substrates was analyzed with emphasis focused on the stability of layers and the release kinetics of silver particles. Applicability of the quartz microbalance measurements (QCM) for quantitative studies of nanoparticle deposition kinetic was also discussed. Except for noble metal and polymer particles, representative results for virus deposition at abiotic surfaces were analyzed. Final part of the review was devoted to nanoparticle corona formation at polymer carrier particles investigated by combination of the concentration depletion, AFM, SEM and the in situ electrokinetic method. It is argued that the results obtained for colloid particles can be used as reliable reference systems for interpretation of protein and other bioparticle deposition, confirming the thesis that simple is universal.


Subject(s)
Colloids , Nanoparticles , Colloids/chemistry , Kinetics , Silver/chemistry , Surface Properties
6.
Article in English | MEDLINE | ID: mdl-35329277

ABSTRACT

Physicochemical properties of poly-L-arginine (P-Arg) molecules in NaCl solutions were determined by molecular dynamics (MD) modeling and various experimental techniques. Primarily, the molecule conformations, the monomer length and the chain diameter were theoretically calculated. These results were used to interpret experimental data, which comprised the molecule secondary structure, the diffusion coefficient, the hydrodynamic diameter and the electrophoretic mobility determined at various ionic strengths and pHs. Using these data, the electrokinetic charge and the effective ionization degree of P-Arg molecules were determined. In addition, the dynamic viscosity measurements for dilute P-Arg solutions enabledto determine the molecule intrinsic viscosity, which was equal to 500 and 90 for ionic strength of 10-5 and 0.15 M, respectively. This confirmed that P-Arg molecules assumed extended conformations and approached the slender body limit at the low range of ionic strength. The experimental data were also used to determine the molecule length and the chain diameter, which agreed with theoretical predictions. Exploiting these results, a robust method for determining the molar mass of P-Arg samples, the hydrodynamic diameter, the radius of gyration and the sedimentation coefficient was proposed.


Subject(s)
Arginine , Molecular Dynamics Simulation , Electrolytes , Hydrodynamics , Viscosity
7.
Actual. psicol. (Impr.) ; 35(131)dic. 2021.
Article in Spanish | LILACS, SaludCR, PsiArg | ID: biblio-1383507

ABSTRACT

Resumen Objetivo. Conocer la experiencia de personas físicamente activas por un largo plazo desde tres etapas: inicio de la vida activa, motivación actual y afrontamiento a las barreras. Método. Se realiza un análisis fenomenológico a partir de entrevistas examinadas a profundidad. N = 11 de personas adultas que han sido activas a un nivel suficiente por los últimos 10 años. Resultados. Surgieron cuatro categorías que describen: la vivencia autónoma, la decisión, el gusto adquirido desde la infancia y el hábito para regular emociones. A manera de conclusión, al conocer las características de la experiencia en la actividad física en personas activas, se confirmó aspectos sobre la motivación autodeterminada, lo que sugiere la presencia de elementos útiles en la intervención dirigida a la activación a largo plazo.


Abstract Objective. To know the experience of long-term active people to understand their relationship with physical practice in three stages: beginning of active life, current motivation, and facing barriers. Method. A phenomenological analysis was done on in-depth interviews. N = 11 adults have been active at a sufficient level for, at least, the last 10 years. Results. Four categories were found: the autonomous experience, the decision making, the preference for an active life acquired since childhood, and the habit through which they regulate their emotions. As a conclusion, the characteristics of the experience of active people with physical activity confirmed aspects about self-determined motivation. Useful elements are suggested in the intervention aimed at long-term activation.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Exercise/psychology , Motivation , Personal Autonomy , Mexico
8.
J Phys Chem B ; 124(14): 2961-2972, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32182068

ABSTRACT

Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the ß-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.


Subject(s)
Molecular Dynamics Simulation , Peptides , Circular Dichroism , Hydrogen-Ion Concentration , Protein Structure, Secondary
9.
Colloids Surf B Biointerfaces ; 184: 110424, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31542642

ABSTRACT

Deposition kinetics of fibrinogen/polystyrene particle complexes on mica and the silicon/silica substrates was studied using the direct optical and atomic force microscopy. Initially, basic physicochemical characteristics of fibrinogen and the microparticles were acquired using the dynamic light scattering and the electrophoretic mobility methods, whereas the zeta potential of the substrates was determined using the streaming potential measurements. Subsequently an efficient method for the preparation of fibrinogen/polymer microparticle complexes characterized by controlled coverage and molecule orientation was developed. It was demonstrated that for a lower suspension concentration the complexes are stable for pH range 3-9 and for a large concentration for pH below 4.5 and above 5.5. This enabled to carry out thorough pH cycling experiments where their isoelectric point was determined to appear at pH 5. Kinetic measurements showed that the deposition rate of the complexes vanished at pH above 5, whereas the kinetics of the positively charged amidine particles, used as control, remained at maximum for pH up to 9. These results were theoretically interpreted using the hybrid random sequential adsorption model. It was confirmed that the deposition kinetics of the complexes can be adequately analyzed in terms of the mean-field approach, analogously to the ordinary colloid particle behavior. This is in contrast to the fibrinogen molecule behavior, which efficiently adsorb on negatively charged substrates for the entire range pHs up to 9.7. These results have practical significance for conducting efficient immunoassays governed by the specific antigen/antibody interactions.


Subject(s)
Aluminum Silicates/chemistry , Cell-Derived Microparticles/chemistry , Fibrinogen/chemistry , Polystyrenes/chemistry , Adsorption , Colloids/chemistry , Dynamic Light Scattering/methods , Hydrogen-Ion Concentration , Isoelectric Point , Kinetics , Microscopy, Atomic Force/methods , Osmolar Concentration , Silicon Dioxide/chemistry , Surface Properties
10.
Langmuir ; 35(37): 12042-12052, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31433647

ABSTRACT

Various physicochemical parameters of poly-l-lysine (PLL) solutions comprising the diffusion coefficient, the electrophoretic mobility, the density, and the intrinsic viscosity were determined for the pH range 3.0-9.2. This allowed us to calculate derivative parameters characterizing the PLL molecule such as: zeta potential, the number of electrokinetic charges, ionization degree, contour length, and cross section area. These data were exploited in theoretical calculations of PLL adsorption kinetics on solid substrates under diffusion transport. A hybrid approach was used comprising a blocking function derived from the random sequential adsorption (RSA) model. In experiments, the PLL adsorption on mica was studied using the streaming potential measurements and interpreted in terms of a general electrokinetic model. This confirmed a side-on adsorption mechanism of the macroion molecules at the examined pH range. Additionally, using this method, the stability of PLL monolayers was determined performing in situ desorption kinetic experiments. In this way, the equilibrium adsorption constant and the energy minimum depth were determined. It was confirmed that the monolayer stability decreases with pH following the decrease in the number of electrokinetic charges per molecule. This confirmed the electrostatic interaction driven adsorption mechanism of PLL. It is also predicted that at pH 5.7-7.4 the monolayers were stable under diffusion-controlled desorption over the time exceeding 100 h. In addition to their significance for basic science, the results obtained in this work can be exploited for developing procedures for preparing stable PLL monolayers of well controlled coverage and electrokinetic properties.

11.
Phys Chem Chem Phys ; 21(12): 6535-6543, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30843905

ABSTRACT

The kinetics of positively charged gold nanoparticle self-assembly on oxidized silicon substrates (wafers) under diffusion-controlled transport was studied using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The latter technique allowed the roughness parameters of the monolayer (root mean square) to be determined as a function of the particle coverage. These results were adequately interpreted in terms of a theoretical model developed for surfaces covered by features of spherical shape considering the tip convolution effect. The stability and the electrokinetic characteristics (zeta potential) of the monolayers were also acquired using streaming potential measurements. It was shown that the inversion of the negative zeta potential of the bare substrate (overcharging) occurs at the particle coverage equal to 0.15, and for larger coverages positive zeta potential values were asymptotically attained. Additionally, the desorption kinetics of the particles was investigated by the streaming potential method, which confirmed the stability of the monolayers for a broad range of pHs. It was argued that these results enable to develop an efficient method for the preparation of gold sensors exhibiting a well-controlled surface roughness and electrostatic charge comprising both negative and positive values.

12.
Phys Chem Chem Phys ; 20(22): 15368-15379, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29796553

ABSTRACT

Quantitative studies on self-assembled hematite/silica nanoparticle (NP) bilayers on mica were performed by applying scanning electron microscopy (SEM), atomic force microscopy (AFM), and streaming potential measurements. The coverage of the supporting hematite layers was adjusted by changing the bulk concentration of the suspension and the deposition time. The coverage was determined by direct enumeration of deposited particles from AFM images and SEM micrographs. Afterward, silica nanoparticle monolayers were assembled under diffusion-controlled transport. A unique functional relationship was derived connecting the silica coverage with the hematite precursor layer coverage. The formation of the hematite monolayer and the hematite/silica bilayer was also monitored in situ by streaming potential measurements. It was confirmed that the zeta potential of the bilayers was independent of the supporting layer coverage, exceeding 0.15. These measurements were theoretically interpreted in terms of the general electrokinetic model that allowed for deriving a formula for calculating nanoparticle coverage in the bilayers. Additionally, from desorption experiments, the interactions among hematite/silica particles in the bilayers were determined using DLVO theory. These results facilitate the development of a robust method of preparing nanoparticle bilayers with controlled properties, with potential applications in catalytic processes.

13.
Langmuir ; 34(9): 3037-3048, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29406751

ABSTRACT

Proteins at interfaces are a key for many applications in the biomedical field, in biotechnologies, in biocatalysis, in food industry, etc. The development of surface layers that allow to control and manipulate proteins is thus highly desired. In previous works, we have shown that mixed polymer brushes combining the protein-repellent properties of poly(ethylene oxide) (PEO) and the stimuli-responsive adsorption behavior of poly(acrylic acid) (PAA) could be synthesized and used to achieve switchable protein adsorption. With the present work, we bring more insight into the rational design of such smart thin films by unravelling the role of PEO on the adsorption/desorption of proteins. The PEO content of the mixed PEO/PAA brushes was regulated, on the one hand, by using PEO with different molar masses and, on the other hand, by varying the ratio of PEO and PAA in the solutions used to synthesize the brushes. The influence of ionic strength on the protein adsorption behavior was also further examined. The behavior of three proteins-human serum albumin, lysozyme, and human fibrinogen, which have very different size, shape, and isoelectric point-was investigated. X-ray photoelectron spectroscopy, quartz crystal microbalance, atomic force microscopy, and streaming potential measurements were used to characterize the mixed polymer brushes and, in particular, to estimate the fraction of each polymer within the brushes. Protein adsorption and desorption conditions were selected based on previous studies. While brushes with a lower PEO content allowed the higher protein adsorption to occur, fully reversible adsorption could only be achieved when the PEO surface density was at least 25 PEO units per nm2. Taken together, the results increase the ability to finely tune protein adsorption, especially with temporal control. This opens up possibilities of applications in biosensor design, separation technologies, nanotransport, etc.


Subject(s)
Acrylic Resins/chemistry , Polyethylene Glycols/chemistry , Proteins/metabolism , Adsorption , Biosensing Techniques , Humans , Molecular Weight , Osmolar Concentration , Polymers/chemistry , Proteins/chemistry , Quartz Crystal Microbalance Techniques , Surface Properties , X-Ray Absorption Spectroscopy
14.
Langmuir ; 33(38): 9916-9925, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28841326

ABSTRACT

An efficient method was developed enabling the synthesis of spheroidal polymer microparticles. Thorough physicochemical characteristics of the particles were acquired comprising the size, shape, electrophoretic mobility, and the diffusion coefficient. The particles were monodisperse, and their shape was well-fitted by prolate spheroids having the axis ratio equal to 4.17. Knowing the diffusion coefficient, their hydrodynamic diameter of 449 nm was calculated, which matched the value derived from Brenner's analytical expression. Particle deposition kinetics on mica and silicon/silica substrates, modified by poly(allylamine hydrochloride) (PAH) adsorption, was studied by optical microscopy and AFM imaging. The validity of the random sequential adsorption model was confirmed. Additionally, monolayers of the particles on these substrates were thoroughly characterized in situ by the streaming potential measurements for different ionic strengths. These measurements confirmed that the ζ potential change with the spheroidal particle coverage is less abrupt than for spheres and agrees with theoretical predictions. Exploiting these results, a useful analytical expression was derived that allows one to calculate the spheroidal particle coverage in situ via the streaming potential measurements. This expression, especially accurate for low coverage range, can be used for a quantitative interpretation of adsorption and desorption kinetics of anisotropic macromolecules, e.g., proteins on solid substrates.

15.
J Colloid Interface Sci ; 503: 186-197, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28525826

ABSTRACT

Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10-4 and 10-2M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10-4 and 10-2M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions.

16.
J Colloid Interface Sci ; 456: 116-24, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26115031

ABSTRACT

Physicochemical properties of poly-l-lysine and its monolayers on mica were thoroughly investigated by dynamic light scattering, electrokinetic methods and atomic force microscopy. The hydrodynamic diameter of PLL was equal to 25.5 nm within a wide range of pH and ionic strength. The electrophoretic measurements revealed that the molecules are positively charged for pH<10.5. By exploiting the electrophoretic mobility data, theelectrokinetic charge on the PLL molecules and their zeta potential were calculated. PLL monolayers of controlled coverage were deposited on mica under diffusion-controlled conditions by varying PLL bulk concentration and adsorption time. The electrokinetic characteristics of the monolayers were acquired in situ via streaming potential measurements. These studies allowed to uniquely determine the zeta potential of the monolayers as a function of pH and ionic strength. In this way the isoelectric point of the monolayers can be determined in a more convenient way compared to bulk measurements disturbed by the PLL molecule interactions. The stability of the monolayers under flow conditions was quantitatively evaluated via streaming potential measurements. The adsorption constant and the binding energy depth of PLL molecules were determined for different ionic strengths. These parameters indicate that the PLL monolayers remain stable over prolonged times.


Subject(s)
Aluminum Silicates/chemistry , Polylysine/chemistry , Adsorption , Electrochemistry/methods , Electrolytes , Equipment Design , Hydrodynamics , Hydrogen-Ion Concentration , Kinetics , Light , Microscopy, Atomic Force , Osmolar Concentration , Scattering, Radiation , Surface Properties , Time Factors , Viscosity
17.
Colloids Surf B Biointerfaces ; 127: 192-9, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25679491

ABSTRACT

Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests.


Subject(s)
Albumins/metabolism , Aluminum Silicates/chemistry , Microscopy, Atomic Force , Recombinant Proteins/metabolism , Adsorption , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration , Static Electricity
18.
J Colloid Interface Sci ; 445: 205-212, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25618237

ABSTRACT

Deposition mechanisms of citrate-stabilized silver nanoparticles 15 nm in diameter on cationic polyelectrolyte supporting layers were evaluated. Initially, the bulk and the electrokinetic properties of cationic polyelectrolytes and their monolayers on mica were determined using in situ streaming potential measurements. Analogously, the size distribution, stability and electrokinetic properties of silver particles were studied using transmission electron microscopy (TEM) and microelectrophoretic measurements. Afterward, the kinetics of silver particle deposition was quantitatively evaluated by a direct enumeration procedure exploiting the atomic force microscopy (AFM) and scanning electron microscopy (SEM) micrographs. Using this method the kinetics of particle adsorption was determined for various polyelectrolyte supporting layers as a function of ionic strength. These experiments were interpreted in terms of the random sequential adsorption (RSA) model. It was found that the highest coverage of 0.35 was obtained for silver monolayers deposited on poly(allylamine hydrochloride) (PAH)-modified mica in the case of higher ionic strength. The release kinetics of nanoparticles was also studied using the SEM and AFM imaging method. Using these experimental data the equilibrium adsorption constant and the binding energy of nanoparticles were calculated by exploiting the RSA approach. The investigations showed that the most stable silver monolayers are obtained for the poly-L-lysine (PLL) supporting layers where the 50% of particle is released after 441h, whereas in the case of PEI the release time was only 9h. These results are consistent with the model of discrete electrostatic interactions among ion pairs. Additionally, the obtained results have practical implication indicating that it is feasible to regulate the rate of silver nanoparticle release by a proper choice of the polyelectrolyte forming the supporting layer.

19.
Adv Colloid Interface Sci ; 222: 530-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25169969

ABSTRACT

The formation of silver particle monolayers at solid substrates in self-assembly processes is thoroughly reviewed. Initially, various silver nanoparticle synthesis routes are discussed with the emphasis focused on the chemical reduction in aqueous media. Subsequently, the main experimental methods aimed at bulk suspension characterization are critically reviewed by pointing out their advantages and limitations. Also, various methods enabling the in situ studies of particle deposition and release kinetics, especially the streaming potential method are discussed. In the next section, experimental data are invoked illustrating the most important features of particle monolayer formation, in particular, the role of bulk suspension concentration, particle size, ionic strength, temperature and pH. Afterward, the stability of monolayers and particle release kinetics are extensively discussed. The results obtained by the ex situ AFM/SEM imaging of particles are compared with the in situ streaming potential measurements. An equivalency of both methods is demonstrated, especially in respect to the binding energy determination. It is shown that these experimental results can be adequately interpreted in terms of the hybrid theoretical approach that combines the bulk transport step with the surface blocking effects derived from the random sequential adsorption model. It is also concluded that the particle release kinetics is governed by the discrete electrostatic interactions among ion pairs on particle and substrate surfaces. The classical theories based on the mean-field (averaged) zeta potential concept proved inadequate. Using the ion pair concept the minor dependence of the binding energy on particle size, ionic strength, pH and temperature is properly explained. The final sections of this review are devoted to the application of silver nanoparticles and their monolayers in medicine, analytical chemistry and catalysis.

20.
J Colloid Interface Sci ; 424: 75-83, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24767501

ABSTRACT

Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes.


Subject(s)
Aluminum Silicates/chemistry , Ferric Compounds/chemistry , Nanoparticles/chemistry , Silver/chemistry , Microscopy, Atomic Force , Nanoparticles/ultrastructure , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...