Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Protein Sci ; 33(7): e5082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38935664

ABSTRACT

Multiheme cytochromes located in different compartments are crucial for extracellular electron transfer in the bacterium Geobacter sulfurreducens to drive important environmental processes and biotechnological applications. Recent studies have unveiled that for particular sets of electron terminal acceptors, discrete respiratory pathways selectively recruit specific cytochromes from both the inner and outer membranes. However, such specificity was not observed for the abundant periplasmic cytochromes, namely the triheme cytochrome family PpcA-E. In this work, the distinctive NMR spectroscopic signatures of these proteins in different redox states were explored to monitor pairwise interactions and electron transfer reactions between each pair of cytochromes. The results showed that the five proteins interact transiently and can exchange electrons between each other revealing intra-promiscuity within the members of this family. This discovery is discussed in the light of the establishment of an effective electron transfer network by this pool of cytochromes. This network is advantageous to the bacteria as it enables the maintenance of the functional working potential redox range within the cells.


Subject(s)
Bacterial Proteins , Geobacter , Geobacter/metabolism , Electron Transport , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytochromes/metabolism , Cytochromes/chemistry , Oxidation-Reduction , Periplasm/metabolism , Periplasm/chemistry
2.
J Microsc ; 295(2): 85-92, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38445705

ABSTRACT

Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.

3.
Front Microbiol ; 14: 1253114, 2023.
Article in English | MEDLINE | ID: mdl-37860142

ABSTRACT

The recent reclassification of the strict anaerobe Geobacter sulfurreducens bacterium as aerotolerant brought attention for oxidative stress protection pathways. Although the electron transfer pathways for oxygen detoxification are not well established, evidence was obtained for the formation of a redox complex between the periplasmic triheme cytochrome PpcA and the diheme cytochrome peroxidase MacA. In the latter, the reduction of the high-potential heme triggers a conformational change that displaces the axial histidine of the low-potential heme with peroxidase activity. More recently, a possible involvement of the triheme periplasmic cytochrome family (PpcA-E) in the protection from oxidative stress in G. sulfurreducens was suggested. To evaluate this hypothesis, we investigated the electron transfer reaction and the biomolecular interaction between each PpcA-E cytochrome and MacA. Using a newly developed method that relies on the different NMR spectral signatures of the heme proteins, we directly monitored the electron transfer reaction from reduced PpcA-E cytochromes to oxidized MacA. The results obtained showed a complete electron transfer from the cytochromes to the high-potential heme of MacA. This highlights PpcA-E cytochromes' efficient role in providing the necessary reducing power to mitigate oxidative stress situations, hence contributing to a better knowledge of oxidative stress protection pathways in G. sulfurreducens.

4.
Protein Sci ; 32(11): e4796, 2023 11.
Article in English | MEDLINE | ID: mdl-37779214

ABSTRACT

Electroactive bacteria combine the oxidation of carbon substrates with an extracellular electron transfer (EET) process that discharges electrons to an electron acceptor outside the cell. This process involves electron transfer through consecutive redox proteins that efficiently connect the inner membrane to the cell exterior. In this study, we isolated and characterized the quinone-interacting membrane cytochrome c ImcH from Geobacter sulfurreducens, which is involved in the EET process to high redox potential acceptors. Spectroscopic and electrochemical studies show that ImcH hemes have low midpoint redox potentials, ranging from -150 to -358 mV, and connect the oxidation of the quinol-pool to EET, transferring electrons to the highly abundant periplasmic cytochrome PpcA with higher affinity than to its homologues. Despite the larger number of hemes and transmembrane helices, the ImcH structural model has similarities with the NapC/NirT/NrfH superfamily, namely the presence of a quinone-binding site on the P-side of the membrane. In addition, the first heme, likely involved on the quinol oxidation, has apparently an unusual His/Gln coordination. Our work suggests that ImcH is electroneutral and transfers electrons and protons to the same side of the membrane, contributing to the maintenance of a proton motive force and playing a central role in recycling the menaquinone pool.


Subject(s)
Electrons , Geobacter , Hydroquinones/metabolism , Geobacter/metabolism , Bacterial Proteins/chemistry , Electron Transport , Oxidation-Reduction , Cytochromes c/metabolism , Quinones/metabolism
5.
J Biol Chem ; 299(10): 105167, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37595873

ABSTRACT

Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the environment, freely diffusing cytochromes, or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three monoheme domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values. Electron transfer experiments monitored by NMR and visible spectroscopy show the variable extent to which the domains promiscuously exchange electrons while reducing different electron acceptors. The results suggest that PgcA is part of a new class of cytochromes - microbial heme-tethered redox strings - that use low-complexity protein stretches to bind metals and promote intra- and intermolecular electron transfer events through its cytochrome domains.

6.
Chemistry ; 28(66): e202202333, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36037397

ABSTRACT

Electron harvesting bacteria are key targets to develop microbial electrosynthesis technologies, which are valid alternatives for the production of value-added compounds without utilization of fossil fuels. Geobacter sulfurreducens, that is capable of donating and accepting electrons from electrodes, is one of the most promising electroactive bacteria. Its electron transfer mechanisms to electrodes have been progressively elucidated, however the electron harvesting pathways are still poorly understood. Previous studies showed that the periplasmic cytochromes PccH and GSU2515 are overexpressed in current-consuming G. sulfurreducens biofilms. PccH was characterized, though no putative partners have been identified. In this work, GSU2515 was characterized by complementary biophysical techniques and in silico simulations using the AlphaFold neural network. GSU2515 is a low-spin monoheme cytochrome with a disordered N-terminal region and an α-helical C-terminal domain harboring the heme group. The cytochrome undergoes a redox-linked heme axial ligand switch, with Met91 and His94 as distal axial ligands in the reduced and oxidized states, respectively. The reduction potential of the cytochrome is negative and modulated by the pH in the physiological range: -78 mV at pH 6 and -113 mV at pH 7. Such pH-dependence coupled to the redox-linked switch of the axial ligand allows the cytochrome to drive a proton-coupled electron transfer step that is crucial to confer directionality to the respiratory chain. Biomolecular interactions and electron transfer experiments indicated that GSU2515 and PccH form a redox complex. Overall, the data obtained highlight for the first time how periplasmic proteins bridge the electron transfer between the outer and inner membrane in the electron harvesting pathways of G. sulfurreducens.


Subject(s)
Bacterial Proteins , Electrons , Ligands , Bacterial Proteins/metabolism , Cytochromes/chemistry , Cytochromes/metabolism , Heme/chemistry , Electron Transport , Oxidation-Reduction
7.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35647499

ABSTRACT

The unicellular eukaryote Saccharomyces cerevisiae is an invaluable resource for the study of basic eukaryotic cellular and molecular processes. However, its small size compared to other eukaryotic organisms the study of subcellular structures is challenging. Expansion microscopy (ExM) holds great potential to study the intracellular architecture of yeast, especially when paired with pan-labelling techniques visualising the full protein content inside cells. ExM allows to increase imaging resolution by physically enlarging a fixed sample that is embedded and cross-linked to a swellable gel followed by isotropic expansion in water. The cell wall present in fungi - including yeast - and Gram-positive bacteria is a resilient structure that resists denaturation and conventional digestion processes usually used in ExM protocols, resulting in uneven expansion. Thus, the digestion of the cell wall while maintaining the structure of the resulting protoplasts is a crucial step to ensure isotropic expansion. For this reason, specific experimental strategies are needed, and only a few protocols are currently available. We have developed a modified ExM protocol for S. cerevisiae , with 4x expansion factor, which allows the visualisation of the ultrastructure of the cells. Here, we describe the experimental procedure in detail, focusing on the most critical steps required to achieve isotropic expansion for ExM of S. cerevisiae .

8.
Front Biosci (Landmark Ed) ; 27(6): 174, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35748250

ABSTRACT

Extracellular electron transfer is a key metabolic process of many organisms that enables them to exchange electrons with extracellular electron donors/acceptors. The discovery of organisms with these abilities and the understanding of their electron transfer processes has become a priority for the scientific and industrial community, given the growing interest on the use of these organisms in sustainable biotechnological processes. For example, in bioelectrochemical systems electrochemical active organisms can exchange electrons with an electrode, allowing the production of energy and added-value compounds, among other processes. In these systems, electrochemical active organisms exchange electrons with an electrode through direct or indirect mechanisms, using, in most cases, multiheme cytochromes. In numerous electroactive organisms, these proteins form a conductive pathway that allows electrons produced from cellular metabolism to be transferred across the cell surface for the reduction of an electrode, or vice-versa. Here, the mechanisms by which the most promising electroactive bacteria perform extracellular electron transfer will be reviewed, emphasizing the proteins involved in these pathways. The ability of some of the organisms to perform bidirectional electron transfer and the pathways used will also be highlighted.


Subject(s)
Cytochromes , Electrons , Electrodes , Electron Transport , Oxidation-Reduction
9.
Front Microbiol ; 13: 898015, 2022.
Article in English | MEDLINE | ID: mdl-35620088

ABSTRACT

Exoelectrogenic microorganisms are in the spotlight due to their unique respiratory mechanisms and potential applications in distinct biotechnological fields, including bioremediation, bioenergy production and microbial electrosynthesis. These applications rely on the capability of these microorganisms to perform extracellular electron transfer, a mechanism that allows the bacteria to transfer electrons to the cell's exterior by establishing functional interfaces between different multiheme cytochromes at the inner membrane, periplasmic space, and outer membrane. The multiheme cytochrome CbcL from Geobacter sulfurreducens is associated to the inner membrane and plays an essential role in the transfer of electrons to final electron acceptors with a low redox potential, as Fe(III) oxides and electrodes poised at -100 mV. CbcL has a transmembranar di-heme b-type cytochrome domain with six helices, linked to a periplasmic cytochrome domain with nine c-type heme groups. The complementary usage of ultraviolet-visible, circular dichroism and nuclear magnetic resonance permitted the structural and functional characterization of CbcL's periplasmic domain. The protein was found to have a high percentage of disordered regions and its nine hemes are low-spin and all coordinated by two histidine residues. The apparent midpoint reduction potential of the CbcL periplasmic domain was determined, suggesting a thermodynamically favorable transfer of electrons to the putative redox partner in the periplasm - the triheme cytochrome PpcA. The establishment of a redox complex between the two proteins was confirmed by probing the electron transfer reaction and the molecular interactions between CbcL and PpcA. The results obtained show for the first time how electrons are injected into the periplasm of Geobacter sulfurreducens for subsequent transfer to the cell's exterior.

10.
Metallomics ; 14(4)2022 04 18.
Article in English | MEDLINE | ID: mdl-35225346

ABSTRACT

Cytochromes are electron transfer (ET) proteins essential in various biological systems, playing crucial roles in the respiratory chains of bacteria. These proteins are particularly abundant in electrogenic microorganisms and are responsible for the efficient delivery of electrons to the cells' exterior. The capability of sending electrons outside the cells open new avenues to be explored for emerging biotechnological applications in bioremediation, microbial electrosynthesis, and bioenergy fields. To develop these applications, it is critical to identify the different redox partners and to elucidate the stepwise ET along the respiratory paths. However, investigating direct ET events between proteins with identical features in nearly all spectroscopic techniques is extremely challenging. Nuclear magnetic resonance (NMR) spectroscopy offers the possibility to overcome this difficulty by analysing the alterations of the spectral signatures of each protein caused by electron exchange events. The uncrowded NMR spectral regions containing the heme resonances of the cytochromes display unique and distinct signatures in the reduced and oxidized states, which can be explored to monitor ET within the redox complex. In this study, we present a strategy for a fast and straightforward monitorization of ET between c-type cytochromes, using as model a triheme periplasmic cytochrome and a membrane-associated monoheme cytochrome from the electrogenic bacterium Geobacter sulfurreducens. The comparison between the 1D 1H NMR spectra obtained for samples containing the two cytochromes and for samples containing the individual proteins clearly demonstrated a unidirectional ET within the redox complex. This strategy provides a simple and straightforward means to elucidate complex biologic respiratory ET chains.


Subject(s)
Cytochromes , Electrons , Cytochromes/chemistry , Cytochromes/metabolism , Electron Transport , Heme/metabolism , Oxidation-Reduction
11.
Biophys J ; 120(23): 5395-5407, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34688593

ABSTRACT

Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and ß-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (-154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.


Subject(s)
Bacterial Proteins , Cytochromes , Ferric Compounds , Geobacter/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytochromes/chemistry , Cytochromes/genetics , Heme/metabolism , Magnetic Resonance Spectroscopy , Oxidation-Reduction
12.
Antioxidants (Basel) ; 10(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070486

ABSTRACT

Electrogenic microorganisms possess unique redox biological features, being capable of transferring electrons to the cell exterior and converting highly toxic compounds into nonhazardous forms. These microorganisms have led to the development of Microbial Electrochemical Technologies (METs), which include applications in the fields of bioremediation and bioenergy production. The optimization of these technologies involves efforts from several different disciplines, ranging from microbiology to materials science. Geobacter bacteria have served as a model for understanding the mechanisms underlying the phenomenon of extracellular electron transfer, which is highly dependent on a multitude of multiheme cytochromes (MCs). MCs are, therefore, logical targets for rational protein engineering to improve the extracellular electron transfer rates of these bacteria. However, the presence of several heme groups complicates the detailed redox characterization of MCs. In this Review, the main characteristics of electroactive Geobacter bacteria, their potential to develop microbial electrochemical technologies and the main features of MCs are initially highlighted. This is followed by a detailed description of the current methodologies that assist the characterization of the functional redox networks in MCs. Finally, it is discussed how this information can be explored to design optimal Geobacter-mutated strains with improved capabilities in METs.

13.
Chem Sci ; 13(1): 210-217, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35059169

ABSTRACT

We demonstrate phage-display screening on self-assembled ligands that enables the identification of oligopeptides that selectively bind dynamic supramolecular targets over their unassembled counterparts. The concept is demonstrated through panning of a phage-display oligopeptide library against supramolecular tyrosine-phosphate ligands using 9-fluorenylmethoxycarbonyl-phenylalanine-tyrosine-phosphate (Fmoc-FpY) micellar aggregates as targets. The 14 selected peptides showed no sequence consensus but were enriched in cationic and proline residues. The lead peptide, KVYFSIPWRVPM-NH2 (P7) was found to bind to the Fmoc-FpY ligand exclusively in its self-assembled state with K D = 74 ± 3 µM. Circular dichroism, NMR and molecular dynamics simulations revealed that the peptide interacts with Fmoc-FpY through the KVYF terminus and this binding event disrupts the assembled structure. In absence of the target micellar aggregate, P7 was further found to dynamically alternate between multiple conformations, with a preferred hairpin-like conformation that was shown to contribute to supramolecular ligand binding. Three identified phages presented appreciable binding, and two showed to catalyze the hydrolysis of a model para-nitro phenol phosphate substrate, with P7 demonstrating conformation-dependent activity with a modest k cat/K M = 4 ± 0.3 × 10-4 M-1 s-1.

14.
J Inorg Biochem ; 198: 110718, 2019 09.
Article in English | MEDLINE | ID: mdl-31153111

ABSTRACT

The rising interest in the use of Geobacter bacteria for biotechnological applications demands a deep understanding of how these bacteria are able to thrive in a variety of environments and perform extracellular electron transfer. The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular acceptors, including heavy metals, toxic organic compounds or electrode surfaces. The periplasmic c-type cytochrome PpcA from this bacterium is a member of a family composed of five periplasmic triheme cytochromes, which are important to bridge the electron transfer between the cytoplasm and the extracellular environment. To better understand the functional mechanism of PpcA it is essential to obtain structural data for this cytochrome. In this work, the geometry of the heme axial ligands, as well as the magnetic properties of the hemes were determined for the oxidized form of the cytochrome, using the 13C NMR chemical shifts of the heme α-substituents. The results were further compared with those previously obtained for the homologous cytochrome from Geobacter sulfurreducens. The orientations of the axial histidine planes and the magnetic properties of the hemes are conserved in both proteins. Overall, the results obtained allowed the definition of the orientation of the magnetic axes of PpcA from G. metallireducens, which will be used as constraints to assist the solution structure determination of the cytochrome in the oxidized form.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome c Group/chemistry , Geobacter/chemistry , Heme/chemistry , Bacterial Proteins/isolation & purification , Cytochrome c Group/isolation & purification , Electron Spin Resonance Spectroscopy , Histidine/chemistry , Ligands , Magnetic Phenomena , Molecular Structure
15.
Biomol NMR Assign ; 13(2): 321-326, 2019 10.
Article in English | MEDLINE | ID: mdl-31119489

ABSTRACT

Microbial electrosynthesis is an emerging green technology that explores the capability of a particular group of microorganisms to drive their metabolism toward the production of hydrogen or value-added chemicals from electrons supplied by electrode surfaces. The cytochrome PccH showed the largest increase in transcription when electrons are supplied to Geobacter sulfurreducens biofilms. Gene knock-out experiments have shown that the electron transfer toward G. sulfurreducens cells was completely inhibited by the deletion of the gene encoding for cytochrome PccH. This identifies a crucial role for this protein in G. sulfurreducens microbial electrosynthesis mechanisms, which are currently unknown. In this work, we present the backbone (1H, 13C and 15N) and heme assignment for PccH in the oxidized state. The data obtained paves the way to identify and structurally map the molecular interaction regions between the cytochrome PccH and its physiological redox partners.


Subject(s)
Cytochromes/chemistry , Cytochromes/metabolism , Geobacter/enzymology , Nuclear Magnetic Resonance, Biomolecular , Geobacter/metabolism , Heme/chemistry , Oxidation-Reduction
16.
Biochem J ; 475(17): 2861-2875, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30072494

ABSTRACT

The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular electron acceptors, including pollutants or electrode surfaces for current production in microbial fuel cells. For these reasons, G. metallireducens are of interest for practical biotechnological applications. The use of such electron acceptors relies on a mechanism that permits electrons to be transferred to the cell exterior. The cytochrome PpcA from G. metallireducens is a member of a family composed of five periplasmic triheme cytochromes, which are important to bridge the electron transfer from the cytoplasmic donors to the extracellular acceptors. Using NMR and visible spectroscopic techniques, a detailed thermodynamic characterization of PpcA was obtained, including the determination of the heme reduction potentials and their redox and redox-Bohr interactions. These parameters revealed unique features for PpcA from G. metallireducens compared with other triheme cytochromes from different microorganisms, namely the less negative heme reduction potentials and concomitant functional working potential ranges. It was also shown that the order of oxidation of the hemes is pH-independent, but the protein is designed to couple e-/H+ transfer exclusively at physiological pH.


Subject(s)
Cytochromes/chemistry , Geobacter/enzymology , Periplasmic Proteins/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Thermodynamics
17.
Nat Immunol ; 19(8): 809-820, 2018 08.
Article in English | MEDLINE | ID: mdl-29967452

ABSTRACT

Regulatory factor X 7 (Rfx7) is an uncharacterized transcription factor belonging to a family involved in ciliogenesis and immunity. Here, we found that deletion of Rfx7 leads to a decrease in natural killer (NK) cell maintenance and immunity in vivo. Genomic approaches showed that Rfx7 coordinated a transcriptional network controlling cell metabolism. Rfx7-/- NK lymphocytes presented increased size, granularity, proliferation, and energetic state, whereas genetic reduction of mTOR activity mitigated those defects. Notably, Rfx7-deficient NK lymphocytes were rescued by interleukin 15 through engagement of the Janus kinase (Jak) pathway, thus revealing the importance of this signaling for maintenance of such spontaneously activated NK cells. Rfx7 therefore emerges as a novel transcriptional regulator of NK cell homeostasis and metabolic quiescence.


Subject(s)
Interleukin-15/metabolism , Killer Cells, Natural/metabolism , Regulatory Factor X1/metabolism , Animals , Cell Proliferation , Cell Survival , Cells, Cultured , Chimera , Energy Metabolism , Gene Regulatory Networks , Immunity, Cellular/genetics , Immunity, Innate/genetics , Janus Kinases/metabolism , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Regulatory Factor X1/genetics , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
18.
Cell Rep ; 23(1): 39-49, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29617671

ABSTRACT

In chronic infection and cancer, T cells acquire a dysfunctional state characterized by the expression of inhibitory receptors. In vitro studies implicated the phosphatase Shp-2 downstream of these receptors, including PD-1. However, whether Shp-2 is responsible in vivo for such dysfunctional responses remains elusive. To address this, we generated T cell-specific Shp-2-deficient mice. These mice did not show differences in controlling chronic viral infections. In this context, Shp-2-deleted CD8+ T lymphocytes expanded moderately better but were less polyfunctional than control cells. Mice with Shp-2-deficient T cells also showed no significant improvement in controlling immunogenic tumors and responded similarly to controls to α-PD-1 treatment. We therefore showed that Shp-2 is dispensable in T cells for globally establishing exhaustion and for PD-1 signaling in vivo. These results reveal the existence of redundant mechanisms downstream of inhibitory receptors and represent the foundation for defining these relevant molecular events.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Neoplasms, Experimental/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Signal Transduction , Virus Diseases/immunology , Animals , Cell Line, Tumor , Female , Humans , Male , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/immunology
19.
Nat Commun ; 8(1): 1992, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222465

ABSTRACT

The chaperone Trigger Factor (TF) from Escherichia coli forms a dimer at cellular concentrations. While the monomer structure of TF is well known, the spatial arrangement of this dimeric chaperone storage form has remained unclear. Here, we determine its structure by a combination of high-resolution NMR spectroscopy and biophysical methods. TF forms a symmetric head-to-tail dimer, where the ribosome binding domain is in contact with the substrate binding domain, while the peptidyl-prolyl isomerase domain contributes only slightly to the dimer affinity. The dimer structure is highly dynamic, with the two ribosome binding domains populating a conformational ensemble in the center. These dynamics result from intermolecular in trans interactions of the TF client-binding site with the ribosome binding domain, which is conformationally frustrated in the absence of the ribosome. The avidity in the dimer structure explains how the dimeric state of TF can be monomerized also by weakly interacting clients.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/physiology , Molecular Chaperones/chemistry , Peptidylprolyl Isomerase/chemistry , Protein Multimerization , Ribosomes/metabolism , Binding Sites , Escherichia coli Proteins/metabolism , Magnetic Resonance Spectroscopy , Molecular Chaperones/metabolism , Molecular Dynamics Simulation , Peptidylprolyl Isomerase/metabolism , Protein Binding/physiology , Protein Domains , Protein Folding
20.
Biochem J ; 474(2): 231-246, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28062839

ABSTRACT

The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e-/H+ coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pKa values of the redox-Bohr center, providing insights into the e-/H+ coupling molecular mechanisms driven by PpcA in G. sulfurreducens.


Subject(s)
Bacterial Proteins/chemistry , Cytochromes c/chemistry , Electrons , Geobacter/chemistry , Heme/chemistry , Protons , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Cytochromes c/genetics , Cytochromes c/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Geobacter/enzymology , Heme/metabolism , Hydrogen-Ion Concentration , Isotope Labeling , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...