Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(7): 076901, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867823

ABSTRACT

Transistors are key elements of electronic circuits as they enable, for example, the isolation or amplification of voltage signals. While conventional transistors are point-type (lumped-element) devices, it may be interesting to realize a distributed transistor-type optical response in a bulk material. Here, we show that low-symmetry two-dimensional metallic systems may be the ideal solution to implement such a distributed-transistor response. To this end, we use the semiclassical Boltzmann equation approach to characterize the optical conductivity of a two-dimensional material under a static electric bias. Similar to the nonlinear Hall effect, the linear electro-optic (EO) response depends on the Berry curvature dipole and can lead to nonreciprocal optical interactions. Most interestingly, our analysis uncovers a novel non-Hermitian linear EO effect that can lead to optical gain and to a distributed transistor response. We study a possible realization based on strained bilayer graphene. Our analysis reveals that the optical gain for incident light transmitted through the biased system depends on the light polarization, and can be quite large, especially for multilayer configurations.

2.
Phys Rev Lett ; 128(1): 013902, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061473

ABSTRACT

Here, inspired by the operation of conventional semiconductor transistors, we introduce a novel class of bulk materials with nonreciprocal and non-Hermitian electromagnetic response. Our analysis shows that material nonlinearities combined with a static electric bias may lead to a linearized permittivity tensor that lacks the Hermitian and transpose symmetries. Remarkably, the material can either dissipate or generate energy, depending on the relative phase of the electric field components. We introduce a simple design for an electromagnetic isolator based on an idealized "MOSFET-metamaterial" and show that its performance can in principle surpass conventional Faraday isolators due to the material gain. Furthermore, it is suggested that analogous material responses may be engineered in natural media in nonequilibrium situations. Our solution determines an entirely novel paradigm to break the electromagnetic reciprocity in a bulk nonlinear material using a static electric bias.

3.
Phys Rev Lett ; 123(21): 219402, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31809172
4.
Phys Rev Lett ; 119(13): 133901, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29341703

ABSTRACT

We theoretically demonstrate that a system formed by two coupled graphene sheets enables a negative damping regime wherein graphene plasmons are pumped by a direct current. This effect is triggered by electrons drifting through one of the graphene sheets and leads to wave instabilities and a spontaneous light emission (spasing) in the midinfrared range. It is shown that there is a deep link between the drift-induced instabilities and wave instabilities in moving media, as both result from the hybridization of oscillators with oppositely signed frequencies. With a thickness of a few nanometers and wide spectral tunability, the proposed structure may find interesting applications in nanophotonic circuitry as an on-chip light source.

5.
Opt Express ; 21(12): 14943-55, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787682

ABSTRACT

We study the Casimir torque arising from the quantum electromagnetic fluctuations due to the interaction of two interfaces in a system formed by a dense array of metallic nanorods embedded in dielectric fluids. It is demonstrated that as a consequence of the ultrahigh density of photonic states in the nanowire array it is possible to channel the quantum fluctuations, and thereby boost the Casimir torque by several orders of magnitude as compared to other known systems (e.g., birefringent parallel plates).


Subject(s)
Electromagnetic Fields , Microfluidics/methods , Models, Chemical , Nanowires/chemistry , Nanowires/radiation effects , Refractometry/methods , Computer Simulation , Torque
6.
Phys Rev Lett ; 107(6): 063903, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21902326

ABSTRACT

We describe a mesoscopic excitation in strongly coupled grids of metallic nanorods, resulting from the hybridization of weakly bounded plasmons. It is shown both theoretically and experimentally that the characteristic spatial scale of the interlaced plasmons is determined by geometrical features, rather than from the electrical length of the nanorods, and that due to their wide band nature, weak sensitivity to metallic absorption, and subwavelength mode sizes, such plasmons may have exciting applications in waveguiding in the nanoscale.


Subject(s)
Elementary Particles , Computer Simulation , Electric Conductivity , Kinetics , Magnetics , Nanotubes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...