Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Adv ; 4(1): vbae030, 2024.
Article in English | MEDLINE | ID: mdl-38476299

ABSTRACT

Motivation: Strain-level analysis of metagenomic data has garnered significant interest in recent years. Microbial single nucleotide polymorphisms (SNPs) are genomic variants that can reflect strain-level differences within a microbial species. The diversity and emergence of SNPs in microbial genomes may reveal evolutionary history and environmental adaptation in microbial populations. However, efficient discovery of shared polymorphic variants in a large collection metagenomic samples remains a computational challenge. Results: MetaQuad utilizes a density-based clustering technique to effectively distinguish between shared variants and non-polymorphic sites using shotgun metagenomic data. Empirical comparisons with other state-of-the-art methods show that MetaQuad significantly reduces the number of false positive SNPs without greatly affecting the true positive rate. We used MetaQuad to identify antibiotic-associated variants in patients who underwent Helicobacter pylori eradication therapy. MetaQuad detected 7591 variants across 529 antibiotic resistance genes. The nucleotide diversity of some genes is increased 6 weeks after antibiotic treatment, potentially indicating the role of these genes in specific antibiotic treatments. Availability and implementation: MetaQuad is an open-source Python package available via https://github.com/holab-hku/MetaQuad.

2.
Nat Commun ; 14(1): 2196, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069161

ABSTRACT

Transient gut microbiota alterations have been reported after antibiotic therapy for Helicobacter pylori. However, alteration in the gut virome after H. pylori eradication remains uncertain. Here, we apply metagenomic sequencing to fecal samples of 44 H. pylori-infected patients at baseline, 6-week (N = 44), and 6-month (N = 33) after treatment. Following H. pylori eradication, we discover contraction of the gut virome diversity, separation of virome community with increased community difference, and shifting towards a higher proportion of core virus. While the gut microbiota is altered at 6-week and restored at 6-month, the virome community shows contraction till 6-month after the treatment with enhanced phage-bacteria interactions at 6-week. Multiple courses of antibiotic treatments further lead to lower virus community diversity when compared with treatment naive patients. Our results demonstrate that H. pylori eradication therapies not only result in transient alteration in gut microbiota but also significantly alter the previously less known gut virome community.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Helicobacter Infections/microbiology , Virome , Anti-Bacterial Agents/adverse effects , Drug Therapy, Combination
3.
Comput Struct Biotechnol J ; 21: 1598-1605, 2023.
Article in English | MEDLINE | ID: mdl-36874160

ABSTRACT

Current single-cell visualisation techniques project high dimensional data into 'map' views to identify high-level structures such as cell clusters and trajectories. New tools are needed to allow the transversal through the high dimensionality of single-cell data to explore the single-cell local neighbourhood. StarmapVis is a convenient web application displaying an interactive downstream analysis of single-cell expression or spatial transcriptomic data. The concise user interface is powered by modern web browsers to explore the variety of viewing angles unavailable to 2D media. Interactive scatter plots display clustering information, while the trajectory and cross-comparison among different coordinates are displayed in connectivity networks. Automated animation of camera view is a unique feature of our tool. StarmapVis also offers a useful animated transition between two-dimensional spatial omic data to three-dimensional single cell coordinates. The usability of StarmapVis is demonstrated by four data sets, showcasing its practical usability. StarmapVis is available at: https://holab-hku.github.io/starmapVis.

4.
NAR Genom Bioinform ; 4(1): lqac002, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35156023

ABSTRACT

Gene regulatory network inference allows for the modeling of genome-scale regulatory processes that are altered during development, in disease, and in response to perturbations. Our group has developed a collection of tools to model various regulatory processes, including transcriptional (PANDA, SPIDER) and post-transcriptional (PUMA) gene regulation, as well as gene regulation in individual samples (LIONESS). These methods work by postulating a network structure and then optimizing that structure to be consistent with multiple lines of biological evidence through repeated operations on data matrices. Although our methods are widely used, the corresponding computational complexity, and the associated costs and run times, do limit some applications. To improve the cost/time performance of these algorithms, we developed gpuZoo which implements GPU-accelerated calculations, dramatically improving the performance of these algorithms. The runtime of the gpuZoo implementation in MATLAB and Python is up to 61 times faster and 28 times less expensive than multi-core CPU implementation of the same methods. gpuZoo is available in MATLAB through the netZooM package https://github.com/netZoo/netZooM and in Python through the netZooPy package https://github.com/netZoo/netZooPy.

5.
Mol Biosyst ; 13(7): 1304-1312, 2017 Jun 27.
Article in English | MEDLINE | ID: mdl-28485748

ABSTRACT

A key question in network inference, that has not been properly answered, is what accuracy can be expected for a given biological dataset and inference method. We present GeneSPIDER - a Matlab package for tuning, running, and evaluating inference algorithms that allows independent control of network and data properties to enable data-driven benchmarking. GeneSPIDER is uniquely suited to address this question by first extracting salient properties from the experimental data and then generating simulated networks and data that closely match these properties. It enables data-driven algorithm selection, estimation of inference accuracy from biological data, and a more multifaceted benchmarking. Included are generic pipelines for the design of perturbation experiments, bootstrapping, analysis of linear dependence, sample selection, scaling of SNR, and performance evaluation. With GeneSPIDER we aim to move the goal of network inference benchmarks from simple performance measurement to a deeper understanding of how the accuracy of an algorithm is determined by different combinations of network and data properties.


Subject(s)
Algorithms , Gene Regulatory Networks , Animals , Benchmarking , Humans , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...