Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Biol Educ ; 24(2)2023 Aug.
Article in English | MEDLINE | ID: mdl-37614897

ABSTRACT

Undergraduate microbiology students are exposed to the theory of the scientific method throughout their undergraduate coursework, but laboratory course curricula often focus on technical skills rather than fully integrating scientific thinking as a component of competencies addressed. Here, we have designed a six-session inquiry-based laboratory (IBL) curriculum for an upper-level microbiology laboratory course that fully involves students in the scientific process using bacterial conjugation as the model system, including both online discussions and in-person laboratory sessions. The student learning objectives focus on the scientific method, experimental design, data analysis, bacterial conjugation mechanisms, and scientific communication. We hypothesized students would meet these learning objectives after completing this IBL and tracked student learning and surveyed students to provide an assessment of the structure of the IBL using pre- and post-IBL quizzes and the Laboratory Course Assessment Survey. Overall, our results show this IBL results in positive student learning gains.

2.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-36061320

ABSTRACT

During the COVID-19 pandemic, universities across the globe quickly shifted to online education. Laboratory courses faced unique challenges and were forced to reevaluate learning objectives and identify creative projects to engage students online. This study describes a newly developed online immunology laboratory curriculum focused on vaccine development. The course incorporated learning objectives to teach the scientific process, key experimental design components, and immunology techniques to evaluate vaccine efficacy. The curriculum, a course-based undergraduate research experience (CURE), asked students to engage in the research literature, propose a vaccine design and assessment, and interpret mock results. Instructor evaluation of student work as well as student self-evaluations demonstrated that students met the curriculum's learning objectives. Additionally, results from the laboratory course assessment survey (LCAS) indicate that this curriculum incorporated the CURE elements of collaboration, discovery and relevance, and iteration.

3.
Development ; 141(22): 4395-405, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25371370

ABSTRACT

UNC-6/Netrin is a conserved axon guidance cue that can mediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40-UNC-5 heterodimers inhibit filopodial protrusion in C. elegans. Here, we identify cytoplasmic signaling molecules required for UNC-6-mediated inhibition of filopodial protrusion involved in axon repulsion. We show that the Rac-like GTPases CED-10 and MIG-2, the Rac GTP exchange factor UNC-73/Trio, UNC-44/Ankyrin and UNC-33/CRMP act in inhibitory UNC-6 signaling. These molecules were required for the normal limitation of filopodial protrusion in developing growth cones and for inhibition of growth cone filopodial protrusion caused by activated MYR::UNC-40 and MYR::UNC-5 receptor signaling. Epistasis studies using activated CED-10 and MIG-2 indicated that UNC-44 and UNC-33 act downstream of the Rac-like GTPases in filopodial inhibition. UNC-73, UNC-33 and UNC-44 did not affect the accumulation of full-length UNC-5::GFP and UNC-40::GFP in growth cones, consistent with a model in which UNC-73, UNC-33 and UNC-44 influence cytoskeletal function during growth cone filopodial inhibition.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Cell Adhesion Molecules/metabolism , Growth Cones/physiology , Nerve Tissue Proteins/metabolism , Pseudopodia/physiology , Receptors, Cell Surface/metabolism , Signal Transduction/physiology , Animals , Epistasis, Genetic/physiology , Nerve Growth Factors/metabolism , Netrins , Signal Transduction/genetics , Time-Lapse Imaging , rac GTP-Binding Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 108(22): 9125-30, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21571637

ABSTRACT

FOG-3, the single Caenorhabditis elegans Tob/BTG protein, directs germ cells to adopt the sperm fate at the expense of oogenesis. Importantly, FOG-3 activity must be maintained for the continued production of sperm that is typical of the male sex. Vertebrate Tob proteins have antiproliferative activity and ERK phosphorylation of Tob proteins has been proposed to abrogate "antiproliferative" activity. Here we investigate FOG-3 phosphorylation and its effect on sperm fate specification. We found both phosphorylated and unphosphorylated forms of FOG-3 in nematodes. We then interrogated the role of FOG-3 phosphorylation in sperm fate specification. Specifically, we assayed FOG-3 transgenes for rescue of a fog-3 null mutant. Wild-type FOG-3 rescued both initiation and maintenance of sperm fate specification. A FOG-3 mutant with its four consensus ERK phosphorylation sites substituted to alanines, called FOG-3(4A), rescued partially: sperm were made transiently but not continuously in both sexes. A different FOG-3 mutant with its sites substituted to glutamates, called FOG-3(4E), had no rescuing activity on its own, but together with FOG-3(4A) rescue was complete. Thus, when FOG-3(4A) and FOG-3(4E) were both introduced into the same animals, sperm fate specification was not only initiated but also maintained, resulting in continuous spermatogenesis in males. Our findings suggest that unphosphorylated FOG-3 initiates the sperm fate program and that phosphorylated FOG-3 maintains that program for continued sperm production typical of males. We discuss implications of our results for Tob/BTG proteins in vertebrates.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Spermatozoa/cytology , Animals , Caenorhabditis elegans/genetics , Cell Lineage , Cell Proliferation , Genotype , Male , Mutation , Oocytes/pathology , Phosphoproteins/chemistry , Phosphoric Monoester Hydrolases/chemistry , Phosphorylation , Spermatogenesis , Spermatozoa/pathology , Transgenes
5.
Dev Biol ; 346(2): 204-14, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20659446

ABSTRACT

The hermaphrodite Caenorhabditis elegans germline has become a classic model for stem cell regulation, but the male C. elegans germline has been largely neglected. This work provides a cellular analysis of the adult C. elegans male germline, focusing on its predicted stem cell region in the distal gonad. The goals of this study were two-fold: to establish the C. elegans male germline as a stem cell model and to identify sex-specific traits of potential relevance to the sperm/oocyte decision. Our results support two major conclusions. First, adult males do indeed possess a population of germline stem cells (GSCs) with properties similar to those of hermaphrodite GSCs (lack of cell cycle quiescence and lack of reproducibly oriented divisions). Second, germ cells in the mitotic region, including those most distal within the niche, exhibit sex-specific behaviors (e.g. cell cycle length) and therefore have acquired sexual identity. Previous studies demonstrated that some germ cells are not committed to a sperm or oocyte cell fate, even in adults. We propose that germ cells can acquire sexual identity without being committed to a sperm or oocyte cell fate.


Subject(s)
Caenorhabditis elegans/embryology , Germ Cells/cytology , Stem Cells/cytology , Animals , Caenorhabditis elegans/metabolism , Cell Cycle , Cell Differentiation , Cell Division , Embryo, Nonmammalian/metabolism , Germ Cells/metabolism , Male , Oocytes/metabolism , Sex Characteristics , Stem Cells/metabolism
6.
Proc Natl Acad Sci U S A ; 107(5): 2048-53, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20080700

ABSTRACT

Controls of stem cell maintenance and early differentiation are known in several systems. However, the progression from stem cell self-renewal to overt signs of early differentiation is a poorly understood but important problem in stem cell biology. The Caenorhabditis elegans germ line provides a genetically defined model for studying that progression. In this system, a single-celled mesenchymal niche, the distal tip cell (DTC), employs GLP-1/Notch signaling and an RNA regulatory network to balance self-renewal and early differentiation within the "mitotic region," which continuously self-renews while generating new gametes. Here, we investigate germ cells in the mitotic region for their capacity to differentiate and their state of maturation. Two distinct pools emerge. The "distal pool" is maintained by the DTC in an essentially uniform and immature or "stem cell-like" state; the "proximal pool," by contrast, contains cells that are maturing toward early differentiation and are likely transit-amplifying cells. A rough estimate of pool sizes is 30-70 germ cells in the distal immature pool and approximately 150 in the proximal transit-amplifying pool. We present a simple model for how the network underlying the switch between self-renewal and early differentiation may be acting in these two pools. According to our model, the self-renewal mode of the network maintains the distal pool in an immature state, whereas the transition between self-renewal and early differentiation modes of the network underlies the graded maturation of germ cells in the proximal pool. We discuss implications of this model for controls of stem cells more broadly.


Subject(s)
Caenorhabditis elegans/cytology , Germ Cells/cytology , Animals , Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Differentiation , Female , Germ Cells/metabolism , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mitosis , Models, Biological , Mutation , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction , Temperature
7.
Dev Biol ; 331(1): 14-25, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19376107

ABSTRACT

The Caenorhabditis elegans distal tip cell (DTC) provides a niche for germline stem cells in both hermaphrodites and males. The hermaphrodite distal tip cell (hDTC) also provides "leader" function to control gonadal elongation and shape, while in males, leader function is allocated to the linker cell (LC). Therefore, the male distal tip cell (mDTC) serves as a niche but not as a leader. The C. elegans homolog of E/Daughterless, HLH-2, was previously implicated in hDTC specification. Here we report that HLH-2 is also critical for hDTC maintenance, hDTC niche function and hDTC expression of a lag-2/DSL ligand reporter. We also find that HLH-2 functions in males to direct linker cell specification and to promote both mDTC maintenance and the mDTC niche function. We conclude that HLH-2 functions in both sexes to promote leader cell specification and DTC niche function.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Gonads/growth & development , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/physiology , Disorders of Sex Development/genetics , Female , Genes, Regulator , Genes, Reporter , Genetic Markers , Gonads/metabolism , Green Fluorescent Proteins/genetics , Male , Mutation , RNA Interference , RNA, Helminth/genetics , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...