Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 240: 112095, 2023 03.
Article in English | MEDLINE | ID: mdl-36535194

ABSTRACT

Inspired by copper-containing enzymes such as galactose oxidase and catechol oxidase, in which distinct coordination environments and nuclearities lead to specific catalytic activities, we summarize here the catalytic properties of dinuclear and mononuclear copper species towards benzyl alcohol oxidation using a multivariate statistical approach. The new dinuclear [Cu2(µ-L1)(µ-pz)]2+ (1) is compared against the mononuclear [CuL2Cl] (2), where (L1)- and (L2)- are the respective deprotonated forms of 2,6-bis((bis(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol, and 3-((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzaldehyde and (pz)- is a pyrazolato bridge. Copper(II) perchlorate (CP) is used as control. The catalytic oxidation of benzyl alcohol is pursued, aiming to assess the role of the ligand environment and nuclearity. The multivariate statistical approach allows for the search of optimal catalytic conditions, considering variables such as catalyst load, hydrogen peroxide load, and time. Species 1, 2 and CP promoted selective production of benzaldehyde at different yields, with only negligible amounts of benzoic acid. Under normalized conditions, 2 showed superior catalytic activity. This species is 3.5-fold more active than the monometallic control CP, and points out to the need for an efficient ligand framework. Species 2 is 6-fold more active than the dinuclear 1, and indicates the favored nuclearity for the conversion of alcohols into aldehydes.


Subject(s)
Benzyl Alcohol , Copper , Ligands , Oxidation-Reduction , Multivariate Analysis
2.
Chemistry ; 28(23): e202104426, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35213062

ABSTRACT

Three binuclear species [LCoIII 2 (µ-Pz)2 ](ClO4 )3 (1), [LNiII 2 (CH3 OH)2 Cl2 ]ClO4 (2), and [LZnII 2 Cl2 ]PF6 (3) supported by the deprotonated form of the ligand 2,6-bis[bis(2-pyridylmethyl) amino-methyl]-4-methylphenol were synthesized, structurally characterized as solids and in solution, and had their electrochemical and spectroscopic behavior established. Species 1-3 had their water reduction ability studied aiming to interrogate the possible cooperative catalytic activity between two neighboring metal centers. Species 1 and 2 reduced H2 O to H2 effectively at an applied potential of -1.6 VAg/AgCl , yielding turnover numbers of 2,820 and 2,290, respectively, after 30 minutes. Species 3 lacked activity and was used as a negative control to eliminate the possibility of ligand-based catalysis. Pre- and post-catalytic data gave evidence of the molecular nature of the process within the timeframe of the experiments. Species 1 showed structural, rather than electronic cooperativity, while species 2 displayed no obvious cooperativity. DFT methods complemented the experimental results determining plausible mechanisms.


Subject(s)
Metals , Water , Catalysis , Crystallography, X-Ray , Ligands , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...