Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Sci Rep ; 14(1): 8339, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38594294

ABSTRACT

Choroideremia (CHM) is an X-linked retinal degeneration leading to loss of the photoreceptors, retinal pigment epithelium (RPE), and choroid. Adaptive optics optoretinography is an emerging technique for noninvasive, objective assessment of photoreceptor function. Here, we investigate parafoveal cone function in CHM using adaptive optics optoretinography and compare with cone structure and clinical assessments of vision. Parafoveal cone mosaics of 10 CHM and four normal-sighted participants were imaged with an adaptive optics scanning light ophthalmoscope. While acquiring video sequences, a 2 s 550Δ10 nm, 450 nW/deg2 stimulus was presented. Videos were registered and the intensity of each cone in each frame was extracted, normalized, standardized, and aggregated to generate the population optoretinogram (ORG) over time. A gamma-pdf was fit to the ORG and the peak was extracted as ORG amplitude. CHM ORG amplitudes were compared to normal and were correlated with bound cone density, ellipsoid zone to RPE/Bruch's membrane (EZ-to-RPE/BrM) distance, and foveal sensitivity using Pearson correlation analysis. ORG amplitude was significantly reduced in CHM compared to normal (0.22 ± 0.15 vs. 1.34 ± 0.31). In addition, CHM ORG amplitude was positively correlated with cone density, EZ-to-RPE/BrM distance, and foveal sensitivity. Our results demonstrate promise for using ORG as a biomarker of photoreceptor function.


Subject(s)
Choroideremia , Humans , Ophthalmoscopy/methods , Retinal Cone Photoreceptor Cells , Choroid , Retinal Pigment Epithelium/diagnostic imaging , Tomography, Optical Coherence/methods
2.
Retina ; 44(4): 659-668, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38531059

ABSTRACT

PURPOSE: Choroideremia is an X-linked inherited retinal degeneration involving the choriocapillaris, retinal pigment epithelium, and photoreceptors. Adaptive optics scanning light ophthalmoscopy allows visualization of retinal structure at the level of individual cells and is well poised to provide insight into the pathophysiologic mechanisms underpinning the retinal degeneration in choroideremia. METHODS: Foveal adaptive optics scanning light ophthalmoscopy images of 102 eyes of 54 individuals with choroideremia were analyzed. Measures were compared with those from standard clinical imaging. Visual acuity was also measured and compared with quantitative foveal metrics. RESULTS: The 3 distinct phenotypes observed were: relatively normal (5 eyes, 4 individuals), spiderweb (9 eyes, 7 individuals), and salt and pepper (87 eyes, 47 individuals). Peak cone density (86 eyes of 51 individuals) was significantly lower in choroideremia than in healthy retinas (P < 0.0001, range: 29,382-157,717 cones/mm2). Peak cone density was significantly related to extent of retained ellipsoid zone on en face optical coherence tomography (r2 = 0.47, P = 0.0009) and inversely related to visual acuity (r2 = 0.20, P = 0.001). CONCLUSION: Distinct phenotypes can be observed on adaptive optics scanning light ophthalmoscopy imaging in choroideremia that cannot always be discerned on standard clinical imaging. Quantitative measures on adaptive optics imaging are related to the structural and functional severity of disease.


Subject(s)
Choroideremia , Retinal Degeneration , Humans , Tomography, Optical Coherence/methods , Ophthalmoscopy/methods , Retinal Cone Photoreceptor Cells
3.
Invest Ophthalmol Vis Sci ; 64(10): 36, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37504961

ABSTRACT

Purpose: Choroideremia (CHM) is an X-linked inherited retinal degeneration causing loss of the photoreceptors, retinal pigment epithelium, and choriocapillaris, although patients typically retain a central island of relatively preserved, functioning retina until late-stage disease. Here, we investigate cone photoreceptor morphology within the retained retinal island by examining cone inner segment area, density, circularity, and intercone space. Methods: Using a custom-built, multimodal adaptive optics scanning light ophthalmoscope, nonconfocal split-detection images of the photoreceptor mosaic were collected at 1°, 2°, and 4° temporal to the fovea from 13 CHM and 12 control subjects. Cone centers were manually identified, and cone borders were segmented. A custom MATLAB script was used to extract area and circularity for each cone and calculate the percentage of intercone space in each region of interest. Bound cone density was also calculated. An unbalanced two-way ANOVA and Bonferroni post hoc tests were used to assess statistical differences between the CHM and control groups and along retinal eccentricity. Results: Cone density was lower in the CHM group than in the control group (P < 0.001) and decreased with eccentricity from the fovea (P < 0.001). CHM cone inner segments were larger in area (P < 0.001) and more circular (P = 0.042) than those of the controls. Intercone space in CHM was also higher than in the controls (P < 0.001). Conclusions: Cone morphology is altered in CHM compared to control, even within the centrally retained, functioning retinal area. Further studies are required to determine whether such morphology is a precursor to cone degeneration.


Subject(s)
Choroideremia , Retinal Cone Photoreceptor Cells , Humans , Choroideremia/diagnosis , Choroideremia/genetics , Ophthalmoscopy/methods , Retina/anatomy & histology , Retinal Pigment Epithelium , Tomography, Optical Coherence/methods
4.
Biomed Opt Express ; 14(1): 387-428, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36698659

ABSTRACT

Twenty-five years ago, adaptive optics (AO) was combined with fundus photography, thereby initiating a new era in the field of ophthalmic imaging. Since that time, clinical applications of AO ophthalmoscopy to investigate visual system structure and function in both health and disease abound. To date, AO ophthalmoscopy has enabled visualization of most cell types in the retina, offered insight into retinal and systemic disease pathogenesis, and been integrated into clinical trials. This article reviews clinical applications of AO ophthalmoscopy and addresses remaining challenges for AO ophthalmoscopy to become fully integrated into standard ophthalmic care.

6.
Clin Ophthalmol ; 16: 3069-3078, 2022.
Article in English | MEDLINE | ID: mdl-36160730

ABSTRACT

Background/Aims: This study was to determine the test-retest repeatability in quantifying macular capillary perfusion density (CPD, expressed as fractal dimension) using optical coherence tomography angiography (OCTA) in a multi-center setting. Methods: OCTA data were obtained in self-reported healthy subjects from Bascom Palmer Eye Institute at the University of Miami (UM, N = 18) and the University of Pennsylvania (UPenn, N = 22). The right eye of each subject was imaged twice at the first visit and then again at an interval of one week to assess intra-visit and inter-visit repeatability. The macular area of the OCTA-derived capillary perfusion density (OCTA-CPD) was analyzed by custom-made image processing and fractal analysis software. Fractal analysis was performed on the skeletonized microvascular network to yield OCTA-CPD by box-counting to the fractal dimension (Dbox) in the superficial vascular plexus (SVP). Repeatability was assessed by three measures: within-subject standard deviation (Sw), coefficient of variation (CoV) of repeated measures, and intraclass correlation coefficient (ICC). Results: OCTA-CPD from both sites (UM and UPENN) showed good to excellent intra-visit repeatability, as demonstrated by the Sw ≤0.004, CoVs ≤0.23%, and ICCs ≥0.61. Similarly, both sites had good to excellent inter-visit repeatability, as shown by the Sw ≤0.005, CoVs ≤0.28%, and ICCs ≥0.61. The Bland-Altman plots of the intra-visit and inter-visit measurements showed excellent agreements between the paired measurements with minimal biases. Conclusion: Our data showed that comparable high repeatability of OCTA-CPD can be achieved in both research sites using the same device, scan protocol, and image analysis.

7.
Ophthalmology ; 129(10): 1177-1191, 2022 10.
Article in English | MEDLINE | ID: mdl-35714735

ABSTRACT

PURPOSE: To assess the safety of the subretinal delivery of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human choroideremia (CHM)-encoding cDNA in CHM. DESIGN: Prospective, open-label, nonrandomized, dose-escalation, phase I/II clinical trial. PARTICIPANTS: Fifteen CHM patients (ages 20-57 years at dosing). METHODS: Patients received uniocular subfoveal injections of low-dose (up to 5 × 1010 vector genome [vg] per eye, n = 5) or high-dose (up to 1 × 1011 vg per eye, n = 10) of a recombinant adeno-associated virus serotype 2 (AAV2) vector carrying a human CHM-encoding cDNA (AAV2-hCHM). Patients were evaluated preoperatively and postoperatively for 2 years with ophthalmic examinations, multimodal retinal imaging, and psychophysical testing. MAIN OUTCOME MEASURES: Visual acuity, perimetry (10-2 protocol), spectral-domain OCT (SD-OCT), and short-wavelength fundus autofluorescence (SW-FAF). RESULTS: We detected no vector-related or systemic toxicities. Visual acuity returned to within 15 letters of baseline in all but 2 patients (1 developed acute foveal thinning, and 1 developed a macular hole); the rest showed no gross changes in foveal structure at 2 years. There were no significant differences between intervention and control eyes in mean light-adapted sensitivity by perimetry or in the lateral extent of retinal pigment epithelium relative preservation by SD-OCT and SW-FAF. Microperimetry showed nonsignificant (< 3 standard deviations of the intervisit variability) gains in sensitivity in some locations and participants in the intervention eye. There were no obvious dose-dependent relationships. CONCLUSIONS: Visual acuity was within 15 letters of baseline after the subfoveal AAV2-hCHM injections in 13 of 15 patients. Acute foveal thinning with unchanged perifoveal function in 1 patient and macular hole in 1 patient suggest foveal vulnerability to the subretinal injections. Longer observation intervals will help establish the significance of the minor differences in sensitivities and rate of disease progression observed between intervention and control eyes.


Subject(s)
Choroideremia , Retinal Perforations , Adult , Choroideremia/diagnosis , Choroideremia/genetics , Choroideremia/therapy , DNA, Complementary , Dependovirus/genetics , Fluorescein Angiography , Genetic Therapy/methods , Humans , Middle Aged , Prospective Studies , Retinal Perforations/therapy , Serogroup , Tomography, Optical Coherence , Young Adult
8.
Transl Vis Sci Technol ; 11(5): 25, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35608855

ABSTRACT

Purpose: Adaptive optics scanning laser ophthalmoscopy (AOSLO) is a high-resolution imaging modality that allows measurements of cellular-level retinal changes in living patients. In retinal diseases, the visibility of photoreceptors in AOSLO images is affected by pathology, patient motion, and optics, which can lead to variability in analyses of the photoreceptor mosaic. Current best practice for AOSLO mosaic quantification requires manual assessment of photoreceptor visibility across overlapping images, a laborious and time-consuming task. Methods: We propose an automated measure for quantification of photoreceptor visibility in AOSLO. Our method detects salient edge features, which can represent visible photoreceptor boundaries in each image. We evaluate our measure against two human graders and two standard automated image quality assessment algorithms. Results: We evaluate the accuracy of pairwise ordering (PO) and the correlation of ordinal rankings (ORs) of photoreceptor visibility in 29 retinal regions, taken from five subjects with choroideremia. The proposed measure had high association with manual assessments (Grader 1: PO = 0.71, OR = 0.61; Grader 2: PO = 0.67, OR = 0.62), which is comparable with intergrader reliability (PO = 0.76, OR = 0.75) and outperforms the top standard approach (PO = 0.57; OR = 0.46). Conclusions: Our edge-based measure can automatically assess photoreceptor visibility and order overlapping images within AOSLO montages. This can significantly reduce the manual labor required to generate high-quality AOSLO montages and enables higher throughput for quantitative studies of photoreceptors. Translational Relevance: Automated assessment of photoreceptor visibility allows us to more rapidly quantify photoreceptor morphology in the living eye. This has applications to ophthalmic medicine by allowing detailed characterization of retinal degenerations, thus yielding potential biomarkers of treatment safety and efficacy.


Subject(s)
Choroideremia , Retinal Cone Photoreceptor Cells , Choroideremia/diagnosis , Choroideremia/pathology , Humans , Ophthalmoscopy/methods , Optics and Photonics , Reproducibility of Results , Retinal Cone Photoreceptor Cells/pathology
9.
Neuroimage ; 255: 119170, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35367649

ABSTRACT

OBJECTIVE: Strong magnetic fields from magnetic resonance (MR) scanners induce a Lorentz force that contributes to vertigo and persistent nystagmus. Prior studies have reported a predominantly horizontal direction for healthy subjects in a 7 Tesla (T) MR scanner, with slow phase velocity (SPV) dependent on head orientation. Less is known about vestibular signal behavior for subjects in a weaker, 3T magnetic field, the standard strength used in the Human Connectome Project (HCP). The purpose of this study is to characterize the form and magnitude of nystagmus induced at 3T. METHODS: Forty-two subjects were studied after being introduced head-first, supine into a Siemens Prisma 3T scanner. Eye movements were recorded in four separate acquisitions over 20 min. A biometric eye model was fitted to the recordings to derive rotational eye position and then SPV. An anatomical template of the semi-circular canals was fitted to the T2 anatomical image from each subject, and used to derive the angle of the B0 magnetic field with respect to the vestibular apparatus. RESULTS: Recordings from 37 subjects yielded valid measures of eye movements. The population-mean SPV ± SD for the horizontal component was -1.38 ± 1.27 deg/sec, and vertical component was -0.93 ± 1.44 deg/sec, corresponding to drift movement in the rightward and downward direction. Although there was substantial inter-subject variability, persistent nystagmus was present in half of subjects with no significant adaptation over the 20 min scanning period. The amplitude of vertical drift was correlated with the roll angle of the vestibular system, with a non-zero vertical SPV present at a 0 degree roll. INTERPRETATION: Non-habituating vestibular signals of varying amplitude are present in resting state data collected at 3T.


Subject(s)
Connectome , Nystagmus, Pathologic , Vestibule, Labyrinth , Eye Movements , Humans , Magnetic Resonance Spectroscopy
10.
JAMA Ophthalmol ; 140(4): 411-420, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35266957

ABSTRACT

Importance: Subretinal injection for gene augmentation in retinal degenerations forcefully detaches the neural retina from the retinal pigment epithelium, potentially damaging photoreceptors and/or retinal pigment epithelium cells. Objective: To use adaptive optics scanning light ophthalmoscopy (AOSLO) to assess the short-term integrity of the cone mosaic following subretinal injections of adeno-associated virus vector designed to deliver a functional version of the CHM gene (AAV2-hCHM) in patients with choroideremia. Design, Setting, and Participants: This longitudinal case series study enrolled adult patients with choroideremia from February 2015 to January 2016 in the US. To be included in the study, study participants must have received uniocular subfoveal injections of low-dose (5 × 1010 vector genome per eye) or high-dose (1 × 1011 vector genome per eye) AAV2-hCHM. Analysis began February 2015. Main Outcomes and Measures: The macular regions of both eyes were imaged before and 1 month after injection using a custom-built multimodal AOSLO. Postinjection cone inner segment mosaics were compared with preinjection mosaics at multiple regions of interest. Colocalized spectral-domain optical coherence tomography and dark-adapted cone sensitivity was also acquired at each time point. Results: Nine study participants ranged in age from 26 to 50 years at the time of enrollment, and all were White men. Postinjection AOSLO images showed preservation of the cone mosaic in all 9 AAV2-hCHM-injected eyes. Mosaics appeared intact and contiguous 1 month postinjection, with the exception of foveal disruption in 1 patient. Optical coherence tomography showed foveal cone outer segment shortening postinjection. Cone-mediated sensitivities were unchanged in 8 of 9 injected and 9 of 9 uninjected eyes. One participant showed acute loss of foveal optical coherence tomography cone outer segment-related signals along with cone sensitivity loss that colocalized with disruption of the mosaic on AOSLO. Conclusions and Relevance: Integrity of the cone mosaic is maintained following subretinal delivery of AAV2-hCHM, providing strong evidence in support of the safety of the injections. Minor foveal thinning observed following surgery corresponds with short-term cone outer segment shortening rather than cone cell loss. Foveal cone loss in 1 participant raises the possibility of individual vulnerability to the subretinal injection.


Subject(s)
Choroideremia , Adult , Choroideremia/diagnosis , Choroideremia/genetics , Choroideremia/therapy , Dependovirus/genetics , Humans , Male , Middle Aged , Ophthalmoscopy/methods , Retinal Cone Photoreceptor Cells , Tomography, Optical Coherence/methods
11.
Ophthalmic Genet ; 42(3): 252-265, 2021 06.
Article in English | MEDLINE | ID: mdl-33729075

ABSTRACT

Purpose: To provide a detailed ophthalmic phenotype of two male patients with Bardet-Biedl Syndrome (BBS) due to mutations in the BBS7 geneMethods: Two brothers ages 26 (Patient 1, P1) and 23 (P2) underwent comprehensive ophthalmic evaluations over three years. Visual function was assessed with full-field electroretinograms (ffERGs), kinetic and chromatic perimetry, multimodal imaging with spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF) with short- (SW) and near-infrared (NIR) excitation lights and adaptive optics scanning light ophthalmoscopy (AOSLO).Results: Both siblings had a history of obesity and postaxial polydactyly; P2 had diagnoses of type 1 Diabetes Mellitus, Addison's disease, high-functioning autism-spectrum disorder and -12D myopia. Visual acuities were better than 20/30. Kinetic fields were moderately constricted. Cone-mediated ffERGs were undetectable, rod ERGs were ~80% of normal mean. Static perimetry showed severe central cone and rod dysfunction. Foveal to parafoveal hypoautofluorescence, most obvious on NIR-FAF, co-localized with outer segment shortening/loss and outer nuclear layer thinning by SD-OCT, and with reduced photoreceptors densities by AOSLO. A structural-functional dissociation was confirmed for cone- and rod-mediated parameters. Worsening of the above abnormalities was documented by SD-OCT and FAF in P2 at 3 years. Gene screening identified compound heterozygous mutations in BBS7 (p.Val266Glu: c.797 T > A of maternal origin; c.1781_1783delCAT, paternal) in both patients.Conclusions: BBS7-associated retinal degeneration may present as a progressive cone-rod dystrophy pattern, reminiscent of both the murine and non-human primate models of the disease. Predominantly central retinal abnormalities in both cone and rod photoreceptors showed a structural-functional dissociation, an ideal scenario for gene augmentation treatments.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Bardet-Biedl Syndrome/genetics , Cone-Rod Dystrophies/genetics , Cytoskeletal Proteins/genetics , Adult , Bardet-Biedl Syndrome/diagnostic imaging , Bardet-Biedl Syndrome/physiopathology , Cone-Rod Dystrophies/diagnostic imaging , Cone-Rod Dystrophies/physiopathology , Electroretinography , Genetic Therapy , Humans , Male , Models, Animal , Mutation/genetics , Ophthalmoscopy , Optical Imaging , Phenotype , Retina/physiopathology , Siblings , Tomography, Optical Coherence , Visual Acuity , Visual Field Tests , Young Adult
12.
Retin Cases Brief Rep ; 15(6): 694-701, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-31306293

ABSTRACT

PURPOSE: To describe in detail the phenotype of a patient with enhanced S-cone syndrome. METHODS: We describe a 13-year-old boy who presented with blurred vision, vitreous cells, cystoid macular edema refractory to steroid treatment, and a negative uveitic workup. The patient underwent a complete ophthalmic examination, full-field electroretinograms (ffERG), automatic static perimetry and multimodal imaging with spectral domain optical coherence tomography, and adaptive optics scanning laser ophthalmoscopy (AOSLO). RESULTS: Spectral domain optical coherence tomography demonstrated cystoid macular edema and a hyperthick, delaminated midperipheral retina. Fluorescein angiography did not demonstrate macular leakage. Rod-mediated ffERGs were undetectable, and there was a supernormal response to short-wavelength stimuli compared with photopically matched longer wavelengths of light consistent with enhanced S-cone syndrome. Gene screening was positive for compound heterozygous mutations NR2E3: a known (c.119-2 A>C) and a novel (c.119-1G>A) mutation. By perimetry, sensitivities were normal or above normal for short-wavelength stimuli; there was no detectable rod-mediated vision. AOSLO demonstrated higher than normal cone densities in the perifoveal retina and evidence for smaller outer segment cone diameters. CONCLUSION: Evidence for supernumerary cones (at least twice the normal complement) by AOSLO and spectral domain optical coherence tomography was associated with supernormal S-cone sensitivities and electroretinogram responses confirming previous in vivo findings in postmortem human specimens. Smaller than normal cones in enhanced S-cone syndrome may represent "hybrid" photoreceptors analogous to the rd7/rd7 murine model of the disease.


Subject(s)
Eye Diseases, Hereditary , Retinal Degeneration , Vision Disorders , Adolescent , Eye Diseases, Hereditary/diagnostic imaging , Eye Diseases, Hereditary/physiopathology , Humans , Male , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/physiopathology , Tomography, Optical Coherence , Vision Disorders/diagnostic imaging , Vision Disorders/physiopathology
13.
Opt Express ; 28(26): 39326-39339, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379485

ABSTRACT

Photoreceptors mediate the first step of vision, transducing light and passing signals to retinal neurons that ultimately send signals along the optic nerve to the brain. A functional deficiency in the photoreceptors, due to either congenital or acquired disease, can significantly affect an individual's sight and quality of life. Methods for quantifying the health and function of photoreceptors are essential for understanding both the progression of disease and the efficacy of treatment. Given that emerging treatments such as gene, stem cell, and small molecule therapy are designed to operate at the cellular scale, it is desirable to monitor function at the commensurate resolution of individual photoreceptors. Previously, non-invasive imaging methods for visualizing photoreceptor mosaic structure have been used to infer photoreceptor health, but these methods do not assess function directly. Conversely, most functional techniques, such as ERG and conventional microperimetry, measure function by aggregating the effects of signals from many photoreceptors. We have previously shown that stimulus-evoked intrinsic changes in intensity can be measured reliably in populations of cone photoreceptors in the intact human eye, a measurement we refer to more generally as the cone optoretinogram. Here we report that we can resolve the intensity optoretinogram at the level of individual cones. Moreover, we show that the individual cone optoretinogram exhibits two key signatures expected of a functional measure. First, responses in individual cones increase systematically as a function of stimulus irradiance. Second, we can use the amplitude of the functional response to middle wavelength (545 nm) light to separate the population of short-wavelength-sensitive (S) cones from the population of middle- and long-wavelength-sensitive (L and M) cones. Our results demonstrate the promise of optoretinography as a direct diagnostic measure of individual cone function in the living human eye.


Subject(s)
Light Signal Transduction/physiology , Optics and Photonics , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/physiology , Humans , Ophthalmoscopy
14.
Transl Vis Sci Technol ; 9(2): 40, 2020 07.
Article in English | MEDLINE | ID: mdl-32855844

ABSTRACT

Purpose: Adaptive optics imaging has enabled the visualization of photoreceptors both in health and disease. However, there remains a need for automated accurate cone photoreceptor identification in images of disease. Here, we apply an open-source convolutional neural network (CNN) to automatically identify cones in images of choroideremia (CHM). We further compare the results to the repeatability and reliability of manual cone identifications in CHM. Methods: We used split-detection adaptive optics scanning laser ophthalmoscopy to image the inner segment cone mosaic of 17 patients with CHM. Cones were manually identified twice by one experienced grader and once by two additional experienced graders in 204 regions of interest (ROIs). An open-source CNN either pre-trained on normal images or trained on CHM images automatically identified cones in the ROIs. True and false positive rates and Dice's coefficient were used to determine the agreement in cone locations between data sets. Interclass correlation coefficient was used to assess agreement in bound cone density. Results: Intra- and intergrader agreement for cone density is high in CHM. CNN performance increased when it was trained on CHM images in comparison to normal, but had lower agreement than manual grading. Conclusions: Manual cone identifications and cone density measurements are repeatable and reliable for images of CHM. CNNs show promise for automated cone selections, although additional improvements are needed to equal the accuracy of manual measurements. Translational Relevance: These results are important for designing and interpreting longitudinal studies of cone mosaic metrics in disease progression or treatment intervention in CHM.


Subject(s)
Choroideremia , Retinal Cone Photoreceptor Cells , Automation , Choroideremia/diagnostic imaging , Humans , Neural Networks, Computer , Reproducibility of Results
15.
Proc IEEE Int Symp Biomed Imaging ; 2020: 1383-1386, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32647558

ABSTRACT

Adaptive optics (AO) scanning laser ophthalmoscopy offers cellular level in-vivo imaging of the human cone mosaic. Existing analysis of cone photoreceptor density in AO images require accurate identification of cone cells, which is a time and labor-intensive task. Recently, several methods have been introduced for automated cone detection in AO retinal images using convolutional neural networks (CNN). However, these approaches have been limited in their ability to correctly identify cones when applied to AO images originating from different locations in the retina, due to changes to the reflectance and arrangement of the cone mosaics with eccentricity. To address these limitations, we present an adapted CNN architecture that incorporates spatial information directly into the network. Our approach, inspired by conditional generative adversarial networks, embeds the retina location from which each AO image was acquired as part of the training. Using manual cone identification as ground truth, our evaluation shows general improvement over existing approaches when detecting cones in the middle and periphery regions of the retina, but decreased performance near the fovea.

16.
Biomed Opt Express ; 10(12): 6476-6496, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31853412

ABSTRACT

Adaptive optics (AO) scanning laser ophthalmoscopy offers a non-invasive approach for observing the retina at a cellular level. Its high resolution capabilities have direct application for monitoring and treating retinal diseases by providing quantitative assessment of cone health and density across time. However, accurate longitudinal analysis of AO images requires that AO images from different sessions be aligned, such that cell-to-cell correspondences can be established between timepoints. Such alignment is currently done manually, a time intensive task that is restrictive for large longitudinal AO studies. Automated longitudinal montaging for AO images remains a challenge because the intensity pattern of imaged cone mosaics can vary significantly, even across short timespans. This limitation prevents existing intensity-based montaging approaches from being accurately applied to longitudinal AO images. In the present work, we address this problem by presenting a constellation-based method for performing longitudinal alignment of AO images. Rather than matching intensity similarities between images, our approach finds structural patterns in the cone mosaics and leverages these to calculate the correct alignment. These structural patterns are robust to intensity variations, allowing us to make accurate longitudinal alignments. We validate our algorithm using 8 longitudinal AO datasets, each with two timepoints separated 6-12 months apart. Our results show that the proposed method can produce longitudinal AO montages with cell-to-cell correspondences across the full extent of the montage. Quantitative assessment of the alignment accuracy shows that the algorithm is able to find longitudinal alignments whose accuracy is on par with manual alignments performed by a trained rater.

17.
Transl Vis Sci Technol ; 8(5): 26, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31637106

ABSTRACT

PURPOSE: To introduce and validate a novel, fully automated algorithm for determining pointwise intercell distance (ICD) and cone density. METHODS: We obtained images of the photoreceptor mosaic from 14 eyes of nine subjects without retinal pathology at two time points using an adaptive optics scanning laser ophthalmoscope. To automatically determine ICD, the radial average of the discrete Fourier transform (DFT) of the image was analyzed using a multiscale, fit-based algorithm to find the modal spacing. We then converted the modal spacing to ICD by assuming a hexagonally packed mosaic. The reproducibility of the algorithm was assessed between the two datasets, and accuracy was evaluated by comparing the results against those calculated from manually identified cones. Finally, the algorithm was extended to determine pointwise ICD and density in montages by calculating modal spacing over an overlapping grid of regions of interest (ROIs). RESULTS: The differences of DFT-derived ICD between the test and validation datasets were 3.2% ± 3.5% (mean ± SD), consistent with the differences in directly calculated ICD (1.9% ± 2.9%). The average ICD derived by the automated method was not significantly different between the development and validation datasets and was equivalent to the directly calculated ICD. When applied to a full montage, the automated algorithm produced estimates of cone density across retinal eccentricity that well match prior empiric measurements. CONCLUSIONS: We created an accurate, repeatable, and fully automated algorithm for determining ICD and density in both individual ROIs and across entire montages. TRANSLATIONAL RELEVANCE: The use of fully automated and validated algorithms will enable rapid analysis over the full photoreceptor montage.

18.
Ophthalmol Retina ; 3(10): 888-899, 2019 10.
Article in English | MEDLINE | ID: mdl-31235310

ABSTRACT

PURPOSE: Recent advances in retinal imaging allow visualization of structural abnormalities in retinal disease at the cellular level. This study used adaptive optics (AO) microperimetry to assess visual sensitivity with high spatial precision and to examine how function varies across 2 phenotypic features observed in choroideremia: atrophic lesion borders and outer retinal tubulations (ORTs). DESIGN: Cross-sectional study. PARTICIPANTS: Twelve choroideremia patients. METHODS: A custom AO scanning light ophthalmoscope (AOSLO) equipped with both confocal and nonconfocal split-detection imaging methods was used to image the photoreceptor inner and outer segment mosaics. For AO microperimetry, circular 550-nm stimuli were presented through the AOSLO system; stimuli were either 9.6 or 38.3 arcmin2 (approximately 60 or 15 times smaller than a Goldman III stimulus). Test locations were identified in structural images and stimuli were targeted to these locations using real-time retinal tracking combined with measurements of transverse chromatic aberration. Psychophysical detection thresholds were measured at the atrophic border in 12 patients. Additionally, visual sensitivity was probed along ORTs in 4 patients. MAIN OUTCOME MEASURE: Visual sensitivity thresholds measured with AO microperimetry at retinal locations corresponding to structural phenotypes observed on AOSLO retinal images. RESULTS: In choroideremia, sharp borders between intact central islands of the photoreceptor mosaic and complete atrophy of the outer retina and retinal pigment epithelium were observed in both split-detection and confocal structural images. Adaptive optics microperimetry at locations spanning these borders showed a commensurately sharp decrease in function, with readily measurable visual sensitivity on one side and dense scotoma on the other. These functional transitions often occurred over a distance smaller than the diameter of the Goldman III stimulus. Thresholds measured along ORTs showed dense scotoma over the tubule in all 4 participants, despite the visibility of remnant cone inner segments on the AO images. CONCLUSIONS: Choroideremia patients exhibited sharp functional transitions that collocated with structural transitions from intact to severely degenerated retina. We found no evidence of visual sensitivity over ORTs. Measuring cone function with high resolution offered insight into disease mechanisms and may enable precise assessment of whether experimental therapies, such as gene therapy, provide a functional benefit.


Subject(s)
Choroideremia/physiopathology , Ophthalmoscopy/methods , Retinal Pigment Epithelium/pathology , Scotoma/physiopathology , Tomography, Optical Coherence/methods , Visual Acuity , Visual Fields , Adult , Choroideremia/diagnosis , Choroideremia/etiology , Cross-Sectional Studies , Humans , Male , Middle Aged , Scotoma/complications , Scotoma/diagnosis , Young Adult
19.
Invest Ophthalmol Vis Sci ; 60(5): 1420-1430, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30943290

ABSTRACT

Purpose: Despite the potential for adaptive optics scanning light ophthalmoscopy (AOSLO) to quantify retinal disease progression at the cellular level, there remain few longitudinal studies investigating changes in cone density as a measure of disease progression. Here, we undertook a prospective, longitudinal study to investigate the variability of cone density measurements in normal subjects during a 2-year period. Methods: Fourteen eyes of nine subjects with no known ocular pathology were imaged both at a baseline and a 2-year follow-up visit by using confocal AOSLO at five retinal locations. Two-year affine-registered images were created to minimize the effects of intraframe distortions. Regions of interest were cropped from baseline, 2-year manually aligned, and 2-year affine-registered images. Cones were identified (graded masked) and cone density was extracted. Results: Mean baseline cone density (cones/mm2) was 87,300, 62,200, 45,500, 28,700, and 18,200 at 190, 350, 500, 900, and 1500 µm, respectively. The mean difference (± standard deviation [SD]) in cone density from baseline to 2-year affine-registered images was 1400 (1700), 100 (1800), 300 (800), 400 (800), and 1000 (2400) cones/mm2 at the same locations. The mean difference in cone density during the 2-year period was lower for affine-registered images than manually aligned images. Conclusions: There was no meaningful change in normal cone density during a 2-year period. Intervisit variability in cone density measurements decreased when intraframe distortions between time points were minimized. This variability must be considered when planning prospective longitudinal clinical trials using changes in cone density as an outcome measure for assessing retinal disease progression.


Subject(s)
Retinal Cone Photoreceptor Cells/pathology , Retinal Diseases/pathology , Adult , Axial Length, Eye/physiology , Diagnostic Techniques, Ophthalmological , Female , Humans , Longitudinal Studies , Male , Middle Aged , Ophthalmoscopy/methods , Prospective Studies , Visual Acuity/physiology , Young Adult
20.
Ophthalmic Med Image Anal (2019) ; 11855: 69-76, 2019 Oct.
Article in English | MEDLINE | ID: mdl-32647836

ABSTRACT

The fovea is an important structure that allows for the high acuity at the center of our visual system. While the fovea has been well studied, the role of the foveal pit in the human retina is still largely unknown. In this study we analyze the shape morphology of the foveal pit using a statistical shape model to find the principal shape variations in a cohort of 50 healthy subjects. Our analysis includes the use of scan geometry correction to reduce the error from inherent distortions in OCT images, and a method for aligning foveal pit surfaces to remove translational and rotational variability between the subjects. Our results show that foveal pit morphology can be represented using less than five principal modes of variation. And we find that the shape variations discovered through our analysis are closely related to the main metrics (depth and diameter) used to study the foveal pit in current literature. Lastly, we evaluated the relationship between the first principal mode of variation in the cohort and the axial length from each subject. Our findings showed a modest inverse relationship between axial length and foveal pit depth that can be confirmed independently by existing studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...