Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Rheumatol ; 73(3): 490-497, 2021 03.
Article in English | MEDLINE | ID: mdl-32969189

ABSTRACT

OBJECTIVE: Monogenic Behçet's disease (BD)-like conditions are increasingly recognized and to date have been found to predominantly involve loss-of-function variants in TNFAIP3. This study was undertaken to identify genetic and pathobiologic mechanisms associated with a BD-like mucocutaneous ulcerative syndrome and neuromyelitis optica (NMO) occurring in 3 generations of an Irish family (n = 5 cases and 5 familial controls). METHODS: Whole-exome sequencing was used to identify potential pathogenic variants in affected family members and determine segregation between affected and unaffected individuals. Relative v-rel reticuloendotheliosis viral oncogene homolog A (RELA) expression in peripheral blood mononuclear cells was compared by Western blotting. Human epithelial and RelA-/- mouse fibroblast experimental systems were used to determine the molecular impact of the RELA truncation in response to tumor necrosis factor (TNF). NF-κB signaling, transcriptional activation, apoptosis, and cytokine production were compared between wild-type and truncated RELA in experimental systems and patient samples. RESULTS: A heterozygous cytosine deletion at position c.1459 in RELA was detected in affected family members. This mutation resulted in a frameshift p.His487ThrfsTer7, producing a truncated protein disrupting 2 transactivation domains. The truncated RELA protein lacks a full transactivation domain. The RELA protein variants were expressed at equal levels in peripheral mononuclear cells. RelA-/- mouse embryonic fibroblasts (MEFs) expressing recombinant human RELAp.His487ThrfsTer7 were compared to those expressing wild-type RELA; however, there was no difference in RELA nuclear translocation. In RelA-/- MEFs, expression of RELAp.His487ThrfsTer7 resulted in a 1.98-fold higher ratio of cleaved caspase 3 to caspase 3 induced by TNF compared to wild-type RELA (P = 0.036). CONCLUSION: Our data indicate that RELA loss-of-function mutations cause BD-like autoinflammation and NMO via impaired NF-κB signaling and increased apoptosis.


Subject(s)
Apoptosis/genetics , Behcet Syndrome/genetics , Cytokines/immunology , NF-kappa B/immunology , Neuromyelitis Optica/genetics , Transcription Factor RelA/genetics , Adolescent , Adult , Animals , Apoptosis/immunology , Behcet Syndrome/immunology , Child , Female , Fibroblasts , Frameshift Mutation , Humans , Ireland , Loss of Function Mutation , Male , Mice , Mice, Knockout , Mice, Transgenic , Neuromyelitis Optica/immunology , Oral Ulcer/genetics , Oral Ulcer/immunology , Pedigree , Skin Ulcer/genetics , Skin Ulcer/immunology , Transcription Factor RelA/immunology , White People , Young Adult
2.
Proteomics ; 20(19-20): e2000062, 2020 10.
Article in English | MEDLINE | ID: mdl-32864787

ABSTRACT

Expression of the macrophage immunometabolism regulator gene (MACIR) is associated with severity of autoimmune disease pathology and with the regulation of macrophage biology through unknown mechanisms. The encoded 206 amino acid protein lacks homology to any characterized protein sequence and is a disordered protein according to structure prediction algorithms. To identify interactions of MACIR with proteins from all subcellular compartments, a membrane solubilization buffer is employed, that together with a high affinity EF hand based pull down method, increases the resolution of quantitative mass spectrometry analysis with significant enrichment of interactions from membrane bound nuclear and mitochondrial compartments compared to samples prepared with radioimmunoprecipitation assay buffer. A total of 63 significant interacting proteins are identified and interaction with the nuclear transport receptor TNPO1 and the trafficking proteins UNC119 homolog A and B are validated by immunoprecipitation. Mutational analysis in two candidate nuclear localization signal motifs in the MACIR amino acid sequence shows the interaction with TNPO1 is likely via a non-classical proline/tyrosine-nuclear localization signal motif (aa98-117). It is shown that employing a highly specific and high affinity pull down method that performs efficiently in this glycerol and detergent rich buffer is a powerful approach for the analysis of uncharacterized protein interactomes.


Subject(s)
Macrophages , Membrane Proteins , Proteomics , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Humans , Immunoprecipitation , beta Karyopherins
3.
Int J Mol Sci ; 20(16)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31408960

ABSTRACT

Autophagy (particularly macroautophagy) is a bulk degradation process used by eukaryotic cells in order to maintain adequate energy levels and cellular homeostasis through the delivery of long-lived proteins and organelles to the lysosome, resulting in their degradation. It is becoming increasingly clear that many of the molecular requirements to fulfil autophagy intersect with those of conventional and unconventional membrane trafficking pathways. Of particular interest is the dependence of these processes on multiple members of the Rab family of small GTP binding proteins. Rab33b is a protein that localises to the Golgi apparatus and has suggested functions in both membrane trafficking and autophagic processes. Interestingly, mutations in the RAB33B gene have been reported to cause the severe skeletal disorder, Smith-McCort Dysplasia; however, the molecular basis for Rab33b in this disorder remains to be determined. In this review, we focus on the current knowledge of the participation of Rab33b and its interacting partners in membrane trafficking and macroautophagy, and speculate on how its function, and dysfunction, may contribute to human disease.


Subject(s)
Autophagy , Protein Interaction Maps , rab GTP-Binding Proteins/metabolism , Animals , Biological Transport , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Humans , Lysosomes/metabolism , Osteochondrodysplasias/metabolism
4.
Handb Exp Pharmacol ; 245: 191-225, 2018.
Article in English | MEDLINE | ID: mdl-29071510

ABSTRACT

Rare bone disorders are a heterogeneous group of diseases, initially associated with mutations in type I procollagen (PC) genes. Recent developments from dissection at the molecular and cellular level have expanded the list of disease-causing proteins, revealing that disruption of the machinery that handles protein secretion can lead to failure in PC secretion and in several cases result in skeletal dysplasia. In parallel, cell-based in vitro studies of PC trafficking pathways offer clues to the identification of new disease candidate genes. Together, this raises the prospect of heritable bone disorders as a paradigm for biosynthetic protein traffic-related diseases, and an avenue through which therapeutic strategies can be explored.Here, we focus on human syndromes linked to defects in type I PC secretion with respect to the landscape of biosynthetic and protein transport steps within the early secretory pathway. We provide a perspective on possible therapeutic interventions for associated heritable craniofacial and skeletal disorders, considering different orders of complexity, from the cellular level by manipulation of proteostasis pathways to higher levels involving cell-based therapies for bone repair and regeneration.


Subject(s)
Collagen Type I/genetics , Diastasis, Bone/genetics , Endoplasmic Reticulum/metabolism , Animals , Bone Regeneration , Collagen Type I/metabolism , Diastasis, Bone/drug therapy , Diastasis, Bone/etiology , Humans , Protein Transport , Proteostasis
SELECTION OF CITATIONS
SEARCH DETAIL
...