Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 10(8)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784388

ABSTRACT

The blood-cerebrospinal fluid barrier (BCB) is important in maintaining brain manganese (Mn) homeostasis. This barrier consists of a single layer of epithelial cells, connected by tight junctions, that restrict the passage of nutrients to only allow molecules to be carried through the membrane by a transporter. These epithelial cells are polarized with asymmetrical blood-facing and cerebrospinal fluid-facing sides. Here, we have established a polarized model of a human choroid plexus papilloma cell line, HIBCPP. For the first time, Mn importers ZIP14 and ZIP8 were identified in HIBCPP cells and were found to be enriched at the basolateral and apical sides of the cell monolayer, respectively. The localization of each ZIP protein adds to the understanding of Mn transport across the HIBCPP BCB model to help understand the mechanism of Mn homeostasis within the brain.

2.
Neural Regen Res ; 13(7): 1253-1262, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30028335

ABSTRACT

While the peripheral nervous system has regenerative ability, restoration of sufficient function remains a challenge. Vimentin has been shown to be localized in axonal growth fronts and associated with nerve regeneration, including myelination, neuroplasticity, kinase signaling in nerve axoplasm, and cell migration; however, the mechanisms regulating its expression within Schwann cell (SC) remain unexplored. The aim of this study was to profile the spatial and temporal expression profile of microRNA (miRNA) in a regenerating rat sciatic nerve after transection, and explore the potential role of miR-138-5p targeting vimentin in SC proliferation and migration. A rat sciatic nerve transection model, utilizing a polyethylene nerve guide, was used to investigate miRNA expression at 7, 14, 30, 60, and 90 days during nerve regeneration. Relative levels of miRNA expression were determined using microarray analysis and subsequently validated with quantitative real-time polymerase chain reaction. In vitro assays were conducted with cultured Schwann cells transfected with miRNA mimics and assessed for migratory and proliferative potential. The top seven dysregulated miRNAs reported in this study have been implicated in cell migration elsewhere, and GO and KEGG analyses predicted activities essential to wound healing. Transfection of one of these, miRNA-138-5p, into SCs reduced cell migration and proliferation. miR-138-5p has been shown to directly target vimentin in cancer cells, and the luciferase assay performed here in rat Schwann cells confirmed it. These results detail a role of miR-138-5p in rat peripheral nerve regeneration and expand on reports of it as an important regulator in the peripheral nervous system.

SELECTION OF CITATIONS
SEARCH DETAIL
...