Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuronal Signal ; 4(4): NS20200009, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33274069

ABSTRACT

Anxiety disorders involve distorted perception of the world including increased saliency of stress-associated cues. However, plasticity in the initial sensory regions of the brain following a fearful experience has never been examined. The cochlear nucleus (CN) is the first station in the central auditory system, with heterogeneous collections of neurons that not only project to but also receive projections from cortico-limbic regions, suggesting a potential for experience-dependent plasticity. Using wireless neural recordings in freely behaving rats, we demonstrate for the first time that neural gain in the CN is significantly altered by fear conditioning to auditory sequences. Specifically, the ventral subnuclei significantly increased firing rate to the conditioned tone sequence, while the dorsal subnuclei significantly decreased firing rate during the conditioning session overall. These findings suggest subregion-specific changes in the balance of inhibition and excitation in the CN as a result of conditioning experience. Heart rate was measured as the conditioned response (CR), which showed that while pre-conditioned stimulus (CS) responding did not change across baseline and conditioning sessions, significant changes in heart rate were observed to the tone sequence followed by shock. Heart-rate findings support acquisition of conditioned fear. Taken together, the present study presents first evidence for potential experience-dependent changes in auditory perception that involve novel plasticity within the first site of processing auditory information in the brain.

2.
J Vis Exp ; (85)2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24637902

ABSTRACT

New materials and designs for neural implants are typically tested separately, with a demonstration of performance but without reference to other implant characteristics. This precludes a rational selection of a particular implant as optimal for a particular application and the development of new materials based on the most critical performance parameters. This article develops a protocol for in vitro and in vivo testing of neural recording electrodes. Recommended parameters for electrochemical and electrophysiological testing are documented with the key steps and potential issues discussed. This method eliminates or reduces the impact of many systematic errors present in simpler in vivo testing paradigms, especially variations in electrode/neuron distance and between animal models. The result is a strong correlation between the critical in vitro and in vivo responses, such as impedance and signal-to-noise ratio. This protocol can easily be adapted to test other electrode materials and designs. The in vitro techniques can be expanded to any other nondestructive method to determine further important performance indicators. The principles used for the surgical approach in the auditory pathway can also be modified to other neural regions or tissue.


Subject(s)
Electrochemical Techniques/instrumentation , Electrodes, Implanted , Electrophysiology/instrumentation , Neurons/physiology , Animals , Benzenesulfonates , Bridged Bicyclo Compounds, Heterocyclic , Coated Materials, Biocompatible , Electrochemical Techniques/methods , Electrophysiology/methods , Polymers , Pyrroles , Rats , Sulfates
3.
J Neural Eng ; 10(1): 016004, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23234724

ABSTRACT

OBJECTIVE: Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. APPROACH: Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. MAIN RESULTS: A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. SIGNIFICANCE: A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during acute implantation, inferring good biostability. Electrode impedance at 1 kHz was correlated with background noise and inversely correlated with signal to noise ratio and spike count, regardless of coating. These results collectively confirm a potential for improvement of neural electrode systems by coating with conducting polymers.


Subject(s)
Coated Materials, Biocompatible/chemistry , Electrodes, Implanted , Evoked Potentials, Auditory/physiology , Neurons/physiology , Polymers/chemistry , Acoustic Stimulation/methods , Animals , Brain/physiology , Rats , Rats, Wistar
4.
J Vis Exp ; (64): e3598, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22710937

ABSTRACT

Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear Nucleus, guided by the monitoring of neural responses to acoustic stimuli, and the fixation of the electrode into place for chronic use is likewise shown.


Subject(s)
Acoustic Stimulation/methods , Behavior, Animal/physiology , Conditioning, Classical/physiology , Discrimination, Psychological/physiology , Electric Stimulation/methods , Heart Rate/physiology , Animals , Cochlear Nucleus/physiology , Cochlear Nucleus/surgery , Electrocardiography/instrumentation , Electrocardiography/methods , Electrodes, Implanted , Paired-Associate Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...