Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895340

ABSTRACT

Imbalances in lipid storage and secretion lead to the accumulation of hepatocyte lipid droplets (LDs) (i.e., hepatic steatosis). Our understanding of the mechanisms that govern the channeling of hepatocyte neutral lipids towards cytosolic LDs or secreted lipoproteins remains incomplete. Here, we performed a series of CRISPR-Cas9 screens under different metabolic states to uncover mechanisms of hepatic neutral lipid flux. Clustering of chemical-genetic interactions identified CLIC-like chloride channel 1 (CLCC1) as a critical regulator of neutral lipid storage and secretion. Loss of CLCC1 resulted in the buildup of large LDs in hepatoma cells and knockout in mice caused liver steatosis. Remarkably, the LDs are in the lumen of the ER and exhibit properties of lipoproteins, indicating a profound shift in neutral lipid flux. Finally, remote homology searches identified a domain in CLCC1 that is homologous to yeast Brl1p and Brr6p, factors that promote the fusion of the inner and outer nuclear envelopes during nuclear pore complex assembly. Loss of CLCC1 lead to extensive nuclear membrane herniations, consistent with impaired nuclear pore complex assembly. Thus, we identify CLCC1 as the human Brl1p/Brr6p homolog and propose that CLCC1-mediated membrane remodeling promotes hepatic neutral lipid flux and nuclear pore complex assembly.

2.
Blood Adv ; 8(11): 2846-2860, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38598725

ABSTRACT

ABSTRACT: The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Dasatinib , Protein Kinase Inhibitors , Dasatinib/therapeutic use , Dasatinib/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Humans , Animals , Mice , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Central Nervous System Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects
3.
Cell Metab ; 35(10): 1814-1829.e6, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37699398

ABSTRACT

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Subject(s)
Cellular Senescence , Senotherapeutics , Cellular Senescence/genetics , Cell Death , Aniline Compounds
4.
bioRxiv ; 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37461644

ABSTRACT

Gene regulation in eukaryotes relies on many mechanisms for optimal expression, including both protein transcription factors and DNA regulatory elements. CRISPR-based screens of both protein coding genes and non-coding regions have allowed identification of these transcriptional networks in human cells. Double-stranded DNA viruses also invoke human-like regulation to control transcription of viral genes that are required at different stages of the viral lifecycle. Here, we applied CRISPR-based tools to dissect regulation of a viral gene at high resolution in the oncogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), whose compact, densely encoded genome provides unique challenges and opportunities for studying transcriptional networks. Through a combination of CRISPR-interference (CRISPRi) and Cas9 nuclease screening, we mapped a novel regulatory network comprised of coding and noncoding elements that influence expression of the essential KSHV protein ORF68 at early and late stages of the viral lifecycle. ORF68 encodes an essential protein involved in packaging the replicated viral DNA into nascent capsids. Although ORF68 expression initiates early in the viral lifecycle, we found that it is primarily required at later times. This work demonstrates the ability to exhaustively identify features controlling a given locus, capturing a complete viral regulatory circuit that functions within the human nucleus to control transcription.

5.
Dev Cell ; 58(18): 1782-1800.e10, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37494933

ABSTRACT

Despite the key roles of perilipin-2 (PLIN2) in governing lipid droplet (LD) metabolism, the mechanisms that regulate PLIN2 levels remain incompletely understood. Here, we leverage a set of genome-edited human PLIN2 reporter cell lines in a series of CRISPR-Cas9 loss-of-function screens, identifying genetic modifiers that influence PLIN2 expression and post-translational stability under different metabolic conditions and in different cell types. These regulators include canonical genes that control lipid metabolism as well as genes involved in ubiquitination, transcription, and mitochondrial function. We further demonstrate a role for the E3 ligase MARCH6 in regulating triacylglycerol biosynthesis, thereby influencing LD abundance and PLIN2 stability. Finally, our CRISPR screens and several published screens provide the foundation for CRISPRlipid (http://crisprlipid.org), an online data commons for lipid-related functional genomics data. Our study identifies mechanisms of PLIN2 and LD regulation and provides an extensive resource for the exploration of LD biology and lipid metabolism.


Subject(s)
CRISPR-Cas Systems , Lipid Droplets , Humans , Perilipin-2/genetics , Perilipin-2/metabolism , Lipid Droplets/metabolism , CRISPR-Cas Systems/genetics , Lipid Metabolism/genetics , Cell Line
6.
Cell Syst ; 14(6): 482-500.e8, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37348463

ABSTRACT

Viruses encode transcriptional regulatory proteins critical for controlling viral and host gene expression. Given their multifunctional nature and high sequence divergence, it is unclear which viral proteins can affect transcription and which specific sequences contribute to this function. Using a high-throughput assay, we measured the transcriptional regulatory potential of over 60,000 protein tiles across ∼1,500 proteins from 11 coronaviruses and all nine human herpesviruses. We discovered hundreds of transcriptional effector domains, including a conserved repression domain in all coronavirus Spike homologs, dual activation-repression domains in viral interferon regulatory factors (VIRFs), and an activation domain in six herpesvirus homologs of the single-stranded DNA-binding protein that we show is important for viral replication and late gene expression in Kaposi's sarcoma-associated herpesvirus (KSHV). For the effector domains we identified, we investigated their mechanisms via high-throughput sequence and chemical perturbations, pinpointing sequence motifs essential for function. This work massively expands viral protein annotations, serving as a springboard for studying their biological and health implications and providing new candidates for compact gene regulation tools.


Subject(s)
Herpesvirus 8, Human , Humans , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Virus Replication/genetics , Gene Expression Regulation
7.
STAR Protoc ; 4(2): 102201, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37000620

ABSTRACT

Phenotypic screens involving pooled CRISPR-Cas9 libraries offer a powerful, rapid yet affordable approach to evaluate gene functions on a global scale. Here, we present a protocol for performing pooled CRISPR-Cas9 loss-of-function screens to identify genetic modifiers using either fluorescence-based or cell death phenotypic readouts. We describe steps for designing and amplifying the library and generating and screening cells. We then detail deep sequencing and statistical analysis using cas9 High Throughput maximum Likelihood Estimator. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2019),1 Li et al. (2022),2 and Roberts et al. (2022).3.

8.
Nat Commun ; 13(1): 6435, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307435

ABSTRACT

During erythroid differentiation, the maintenance of genome integrity is key for the success of multiple rounds of cell division. However, molecular mechanisms coordinating the expression of DNA repair machinery in erythroid progenitors are poorly understood. Here, we discover that an RNA N6-methyladenosine (m6A) methyltransferase, METTL16, plays an essential role in proper erythropoiesis by safeguarding genome integrity via the control of DNA-repair-related genes. METTL16-deficient erythroblasts exhibit defective differentiation capacity, DNA damage and activation of the apoptotic program. Mechanistically, METTL16 controls m6A deposition at the structured motifs in DNA-repair-related transcripts including Brca2 and Fancm mRNAs, thereby upregulating their expression. Furthermore, a pairwise CRISPRi screen revealed that the MTR4-nuclear RNA exosome complex is involved in the regulation of METTL16 substrate mRNAs in erythroblasts. Collectively, our study uncovers that METTL16 and the MTR4-nuclear RNA exosome act as essential regulatory machinery to maintain genome integrity and erythropoiesis.


Subject(s)
Erythropoiesis , Methyltransferases , Methyltransferases/metabolism , Methylation , Erythropoiesis/genetics , Adenosine/metabolism , RNA, Messenger/metabolism , Erythroblasts/metabolism , DNA/metabolism
9.
Cancer Gene Ther ; 29(11): 1751-1760, 2022 11.
Article in English | MEDLINE | ID: mdl-35794338

ABSTRACT

B-cell precursor acute lymphoblastic leukemias (B-ALL) are characterized by the activation of signaling pathways, which are involved in survival and proliferation of leukemia cells. Using an unbiased shRNA library screen enriched for targeting signaling pathways, we identified MTOR as the key gene on which human B-ALL E2A-PBX1+ RCH-ACV cells are dependent. Using genetic and pharmacologic approaches, we investigated whether B-ALL cells depend on MTOR upstream signaling pathways including PI3K/AKT and the complexes MTORC1 or MTORC2 for proliferation and survival in vitro and in vivo. Notably, the combined inhibition of MTOR and AKT shows a synergistic effect on decreased cell proliferation in B-ALL with different karyotypes. Hence, B-ALL cells were more dependent on MTORC2 rather than MTORC1 complex in genetic assays. Using cell metabolomics, we identified changes in mitochondrial fuel oxidation after shRNA-mediated knockdown or pharmacological inhibition of MTOR. Dependence of the cells on fatty acid metabolism for their energy production was increased upon inhibition of MTOR and associated upstream signaling pathways, disclosing a possible target for a combination therapy. In conclusion, B-ALL are dependent on the PI3K/AKT/MTOR signaling pathway and the combination of specific small molecules targeting this pathway appears to be promising for the treatment of B-ALL patients.


Subject(s)
Phosphatidylinositol 3-Kinases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Signal Transduction , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Proliferation , Cell Line, Tumor
10.
PLoS Pathog ; 18(1): e1010236, 2022 01.
Article in English | MEDLINE | ID: mdl-35041709

ABSTRACT

While traditional methods for studying large DNA viruses allow the creation of individual mutants, CRISPR/Cas9 can be used to rapidly create thousands of mutant dsDNA viruses in parallel, enabling the pooled screening of entire viral genomes. Here, we applied this approach to Kaposi's sarcoma-associated herpesvirus (KSHV) by designing a sgRNA library containing all possible ~22,000 guides targeting the 154 kilobase viral genome, corresponding to one cut site approximately every 8 base pairs. We used the library to profile viral sequences involved in transcriptional activation of late genes, whose regulation involves several well characterized features including dependence on viral DNA replication and a known set of viral transcriptional activators. Upon phenotyping all possible Cas9-targeted viruses for transcription of KSHV late genes we recovered these established regulators and identified a new required factor (ORF46), highlighting the utility of the screening pipeline. By performing targeted deep sequencing of the viral genome to distinguish between knock-out and in-frame alleles created by Cas9, we identify the DNA binding but not catalytic domain of ORF46 to be required for viral DNA replication and thus late gene expression. Our pooled Cas9 tiling screen followed by targeted deep viral sequencing represents a two-tiered screening paradigm that may be widely applicable to dsDNA viruses.


Subject(s)
Gene Expression Regulation, Viral/physiology , Genes, Viral/genetics , Herpesvirus 8, Human/genetics , CRISPR-Cas Systems , HEK293 Cells , Humans
11.
Mol Cell ; 80(3): 452-469.e9, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33157015

ABSTRACT

Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.


Subject(s)
RNA-Binding Proteins/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/genetics , Alternative Splicing , Animals , Cell Cycle Proteins/metabolism , Exons , Gene Expression Profiling/methods , Genes, Tumor Suppressor , Humans , Liver Neoplasms/genetics , Male , Mice , Mice, Inbred ICR , Mice, SCID , RNA Interference , RNA Splicing , RNA-Binding Proteins/metabolism , Tumor Suppressor Protein p53/metabolism
13.
Cell Rep ; 30(5): 1417-1433.e7, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32023459

ABSTRACT

Reactive oxygen species (ROS) play critical roles in metabolism and disease, yet a comprehensive analysis of the cellular response to oxidative stress is lacking. To systematically identify regulators of oxidative stress, we conducted genome-wide Cas9/CRISPR and shRNA screens. This revealed a detailed picture of diverse pathways that control oxidative stress response, ranging from the TCA cycle and DNA repair machineries to iron transport, trafficking, and metabolism. Paradoxically, disrupting the pentose phosphate pathway (PPP) at the level of phosphogluconate dehydrogenase (PGD) protects cells against ROS. This dramatically alters metabolites in the PPP, consistent with rewiring of upper glycolysis to promote antioxidant production. In addition, disruption of peroxisomal import unexpectedly increases resistance to oxidative stress by altering the localization of catalase. Together, these studies provide insights into the roles of peroxisomal matrix import and the PPP in redox biology and represent a rich resource for understanding the cellular response to oxidative stress.


Subject(s)
Oxidative Stress , Pentose Phosphate Pathway , Peroxisomes/metabolism , CRISPR-Cas Systems , Catalase/metabolism , Cytoprotection , Cytosol/metabolism , Genome, Human , Glucose/metabolism , Glycolysis , HeLa Cells , Humans , K562 Cells , Phosphogluconate Dehydrogenase , Protein Transport , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism
15.
J Biol Chem ; 295(7): 2057-2067, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31915244

ABSTRACT

Macrolide antibiotics, such as erythromycin and josamycin, are natural polyketide products harboring 14- to 16-membered macrocyclic lactone rings to which various sugars are attached. These antibiotics are used extensively in the clinic because of their ability to inhibit bacterial protein synthesis. More recently, some macrolides have been shown to also possess anti-inflammatory and other therapeutic activities in mammalian cells. To better understand the targets and effects of this drug class in mammalian cells, we used a genome-wide shRNA screen in K562 cancer cells to identify genes that modulate cellular sensitivity to josamycin. Among the most sensitizing hits were proteins involved in mitochondrial translation and the mitochondrial unfolded protein response, glycolysis, and the mitogen-activated protein kinase signaling cascade. Further analysis revealed that cells treated with josamycin or other antibacterial agents exhibited impaired oxidative phosphorylation and metabolic shifts to glycolysis. Interestingly, we observed that knockdown of the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) gene, which contributes to p38 mitogen-activated protein kinase signaling, sensitized cells only to josamycin but not to other antibacterial agents. There is a growing interest in better characterizing the therapeutic effects and toxicities of antibiotics in mammalian cells to guide new applications in both cellular and clinical studies. To our knowledge, this is the first report of an unbiased genome-wide screen to investigate the effects of a clinically used antibiotic on human cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , MAP Kinase Kinase Kinase 4/genetics , Protein Biosynthesis/drug effects , p38 Mitogen-Activated Protein Kinases/genetics , Animals , Anti-Bacterial Agents/adverse effects , Drug Resistance, Microbial/drug effects , Erythromycin/adverse effects , Erythromycin/pharmacology , Gene Expression Regulation/drug effects , Glycolysis/drug effects , Humans , Josamycin/adverse effects , Josamycin/pharmacology , K562 Cells , MAP Kinase Kinase Kinase 4/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Macrolides/adverse effects , Macrolides/pharmacology , Mitogen-Activated Protein Kinases/genetics , Oxidative Phosphorylation/drug effects , Protein Synthesis Inhibitors/adverse effects , Protein Synthesis Inhibitors/pharmacology , Unfolded Protein Response/drug effects , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
16.
Nat Neurosci ; 23(2): 194-208, 2020 02.
Article in English | MEDLINE | ID: mdl-31959936

ABSTRACT

Microglia become progressively activated and seemingly dysfunctional with age, and genetic studies have linked these cells to the pathogenesis of a growing number of neurodegenerative diseases. Here we report a striking buildup of lipid droplets in microglia with aging in mouse and human brains. These cells, which we call 'lipid-droplet-accumulating microglia' (LDAM), are defective in phagocytosis, produce high levels of reactive oxygen species and secrete proinflammatory cytokines. RNA-sequencing analysis of LDAM revealed a transcriptional profile driven by innate inflammation that is distinct from previously reported microglial states. An unbiased CRISPR-Cas9 screen identified genetic modifiers of lipid droplet formation; surprisingly, variants of several of these genes, including progranulin (GRN), are causes of autosomal-dominant forms of human neurodegenerative diseases. We therefore propose that LDAM contribute to age-related and genetic forms of neurodegeneration.


Subject(s)
Aging/pathology , Brain/pathology , Lipids , Microglia/pathology , Animals , Humans , Inflammation/pathology , Mice
17.
Brain Res ; 1728: 146601, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31843624

ABSTRACT

Mutations in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis (ALS). Both toxic gain of function and loss of function pathogenic mechanisms have been proposed. Accruing evidence from mouse knockout studies point to a role for C9ORF72 as a regulator of immune function. To provide further insight into its cellular function, we performed a genome-wide synthetic lethal CRISPR screen in human myeloid cells lacking C9ORF72. We discovered a strong synthetic lethal genetic interaction between C9ORF72 and FIS1, which encodes a mitochondrial membrane protein involved in mitochondrial fission and mitophagy. Mass spectrometry experiments revealed that in C9ORF72 knockout cells, FIS1 strongly bound to a class of immune regulators that activate the receptor for advanced glycation end (RAGE) products and trigger inflammatory cascades. These findings present a novel genetic interactor for C9ORF72 and suggest a compensatory role for FIS1 in suppressing inflammatory signaling in the absence of C9ORF72.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockout Techniques/methods , Genetic Testing , Humans , RNA-Seq , Synthetic Lethal Mutations/genetics , U937 Cells
18.
Elife ; 82019 11 01.
Article in English | MEDLINE | ID: mdl-31674906

ABSTRACT

The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.


Subject(s)
Arsenite Transporting ATPases/antagonists & inhibitors , Benzamides/pharmacology , Endoplasmic Reticulum/drug effects , Ricin/toxicity , Thiophenes/pharmacology , Arsenite Transporting ATPases/genetics , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Protein Transport
19.
Neuron ; 104(5): 885-898.e8, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31587919

ABSTRACT

Hexanucleotide GGGGCC repeat expansion in C9ORF72 is the most prevalent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One pathogenic mechanism is the aberrant accumulation of dipeptide repeat (DPR) proteins produced by the unconventional translation of expanded RNA repeats. Here, we performed genome-wide CRISPR-Cas9 screens for modifiers of DPR protein production in human cells. We found that DDX3X, an RNA helicase, suppresses the repeat-associated non-AUG translation of GGGGCC repeats. DDX3X directly binds to (GGGGCC)n RNAs but not antisense (CCCCGG)n RNAs. Its helicase activity is essential for the translation repression. Reduction of DDX3X increases DPR levels in C9ORF72-ALS/FTD patient cells and enhances (GGGGCC)n-mediated toxicity in Drosophila. Elevating DDX3X expression is sufficient to decrease DPR levels, rescue nucleocytoplasmic transport abnormalities, and improve survival of patient iPSC-differentiated neurons. This work identifies genetic modifiers of DPR protein production and provides potential therapeutic targets for C9ORF72-ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/biosynthesis , DEAD-box RNA Helicases/metabolism , Frontotemporal Dementia/metabolism , Animals , CRISPR-Cas Systems , Drosophila , Humans , Protein Biosynthesis/physiology , Repetitive Sequences, Nucleic Acid
20.
Sci Rep ; 9(1): 14020, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31570734

ABSTRACT

Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.


Subject(s)
Brain Neoplasms/pathology , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Glioblastoma/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Brain Neoplasms/genetics , Glioblastoma/genetics , Humans , Neoplasm Invasiveness/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...