Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(17): 11869-11878, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32867493

ABSTRACT

As the importance of effective vaccines and the role of protein therapeutics in the drug industry continue to expand, alternative strategies to characterize protein complexes are needed. Mass spectrometry (MS) in conjunction with enzymatic digestion or chemical probes has been widely used for mapping binding epitopes at the molecular level. However, advances in instrumentation and application of activation methods capable of accessing higher energy dissociation pathways have recently allowed direct analysis of protein complexes. Here we demonstrate a workflow utilizing native MS and ultraviolet photodissociation (UVPD) to map the antigenic determinants of a model antibody-antigen complex involving hemagglutinin (HA), the primary immunogenic antigen of the influenza virus, and the D1 H1-17/H3-14 antibody which has been shown to confer potent protection to lethal infection in mice despite lacking neutralization activity. Comparison of sequence coverages upon UV photoactivation of HA and of the HA·antibody complex indicates the elimination of some sequence ions that originate from backbone cleavages exclusively along the putative epitope regions of HA in the presence of the antibody. Mapping the number of sequence ions covering the HA antigen versus the HA·antibody complex highlights regions with suppressed backbone cleavage and allows elucidation of unknown epitopes. Moreover, examining the observed fragment ion types generated by UVPD demonstrates a loss in diversity exclusively along the antigenic determinants upon MS/MS of the antibody-antigen complex. UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.


Subject(s)
Epitope Mapping/methods , Hemagglutinins/metabolism , Photochemical Processes , Tandem Mass Spectrometry/methods , Molecular Structure , Ultraviolet Rays
2.
Vaccine ; 36(41): 6144-6151, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30194004

ABSTRACT

Influenza vaccines are the most effective intervention to prevent the substantial public health burden of seasonal and pandemic influenza. Hemagglutinin (HA), as the main antigen in inactivated influenza vaccines (IIVs), elicits functional neutralizing antibodies and largely determines IIV effectiveness. HA potency has been evaluated by single-radial immunodiffusion (SRID), the standard in vitro potency assay for IIVs, to predict vaccine immunogenicity with a correlation to protective efficacy. We previously reported that limited trypsin digestion (LTD) selectively degraded stressed HA, so that an otherwise conformationally insensitive biophysical quantification technique could specifically quantify trypsin-resistant, immunologically active HA. Here, we demonstrate that isotope dilution mass spectrometry (IDMS), a method capable of quantifying the absolute HA concentration without reference antigen use, can be further expanded by adding LTD followed with precipitation to selectively quantify the active HA. We test the LTD-IDMS assay on H7N9 vaccines stressed by low pH, raised temperature, or freeze/thaw cycles. This method, unlike SRID, has no requirement for strain-specific reference antigens or antibodies and can generate potency values that correlate with SRID. Thus, LTD-IDMS is a promising alternative in vitro potency assay for influenza vaccines to complement and potentially replace SRID in a pandemic when strain specific reagents may not be readily available.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza Vaccines/therapeutic use , Influenza, Human/immunology , Influenza, Human/prevention & control , Hemagglutinins/metabolism , Humans , Isotope Labeling , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...