Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 753: 142010, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-32890880

ABSTRACT

Nutrient and pesticide pollution are among the major threats to groundwater quality in agriculturally impacted aquifers. Understanding their legacy effects and drivers are important to protect aquifers from exposures to contamination. However, the complexities of groundwater flowpaths make it difficult to predict the time-scales of groundwater flow and contaminant transport. To determine these controls of groundwater nutrient and pesticides in an aquifer system underlying an intensive agricultural area in the Great Barrier Reef catchment, Australia, we sampled tritium (3H) to estimate groundwater-age, nutrient and pesticide concentrations to investigate groundwater contamination, and nitrogen (ẟ15N-NO3-) and oxygen (ẟ18O-NO3-) isotopes to determine groundwater nitrate dynamics. We, then, constructed high-resolution 3D geological and groundwater flow models of the aquifer system to determine the role of the geologic heterogeneity on the observed nutrient and pesticide concentrations. Groundwater 3H derived ages, and nutrient and pesticide concentrations did not follow distinct spatial trends. ẟ15N-NO3- and ẟ18O-NO3- values indicated that nitrification and denitrification processes influenced nitrate dynamics in the aquifer system; however, they were not solely able to explain the entire 3D variability. The 3D geologic modelling identified possible preferential flowpaths and perched systems, which helped to explain the observed groundwater-age, nutrient and pesticide variabilities. Old-groundwater (~100-years) was found in shallow depths (<15 m) where perched systems were identified. In areas with preferential flowpaths, young-groundwater (⁓1-year) with significant nitrate (~12 mg-N/L) and pesticides (up to 315 ng/L) concentrations were detected at deeper depths (>25 m), below perched and locally confined systems. Downward increasing groundwater-age, and decreasing nutrient and pesticide concentrations were detected in the unconfined aquifer, while old-groundwater (~160-years) and lower nitrate (<3 mg-N/L) and pesticides (<2 ng/L) concentrations were detected in the confined systems. This study demonstrates the importance of understanding both the geology and the hydrogeology of an area before deploying monitoring studies and/or making conclusions from tritium, nutrient and pesticide data alone.

2.
Sci Rep ; 8(1): 12813, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30143744

ABSTRACT

The relationship between the atmospheric concentration of cosmogenic isotopes, the change of solar activity and hence secondary neutron flux has already been proven. The temporal atmospheric variation of the most studied cosmogenic isotopes shows a significant anti-correlation with solar cycles. However, since artificial tritium input to the atmosphere due to nuclear-weapon tests masked the expected variations of tritium production rate by three orders of magnitude, the natural variation of tritium in meteoric precipitation has not previously been detected. For the first time, we provide clear evidence of the positive correlation between the tritium concentration of meteoric precipitation and neutron flux modulated by solar magnetic activity. We found trends in tritium time series for numerous locations worldwide which are similar to the variation of secondary neutron flux and sun spot numbers. This variability appears to have similar periodicities to that of solar cycle. Frequency analysis, cross correlation analysis, continuous and cross wavelet analysis provide mathematical evidence that the correlation between solar cycle and meteoric tritium does exist. Our results demonstrate that the response of tritium variation in precipitation to the solar cycle can be used to help us understand its role in the water cycle.

3.
Sci Total Environ ; 580: 367-379, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27989474

ABSTRACT

Assessing recharge is critical to understanding groundwater and preventing pollution. Here, we investigate recharge in an Australian coastal aquifer using a combination of physical, modelling and geochemical techniques. We assess whether recharge may occur through a pervasive layer of floodplain muds that was initially hypothesized to be impermeable. At least 59% of the precipitation volume could be accounted for in the shallow aquifer using the water table fluctuation method during four significant recharge events. Precipitation events <20mm did not produce detectable aquifer recharge. The highest recharge rates were estimated in the area underneath the floodplain clay layer rather than in the sandy area. A steady-state chloride method implied recharge rates of at least 200mm/year (>14% of annual precipitation). Tritium dating revealed long term net vertical recharge rates ranging from 27 to 114mm/year (average 58mm/year) which were interpreted as minimum net long term recharge. Borehole experiments revealed more permeable conditions and heterogeneous infiltration rates when the floodplain soils were dry. Wet conditions apparently expand floodplain clays, closing macropores and cracks that act as conduits for groundwater recharge. Modelled groundwater flow paths were consistent with tritium dating and provided independent evidence that the clay layer does not prevent local recharge. Overall, all lines of evidence demonstrated that the coastal floodplain muds do not prevent the infiltration of rainwater into the underlying sand aquifer, and that local recharge across the muds was widespread. Therefore, assuming fine-grained floodplain soils prevent recharge and protect underlying aquifers from pollution may not be reasonable.

4.
Isotopes Environ Health Stud ; 45(2): 96-117, 2009 Jun.
Article in English | MEDLINE | ID: mdl-20183224

ABSTRACT

We describe an advanced methodology for low-level tritium measurement in regard to calibration, electrolytic tritium enrichment, liquid scintillation counting (LSC) measurement, and prevention of sample contamination. Details are given on enrichment parameters and electrode processes for optimisation of enrichment reproducibility and on optimisation of LSC stability. Intercomparison results demonstrate high accuracy of the tritium measurement system. The use of accurate tritium data for groundwater dating in the southern hemisphere is demonstrated with data from several groundwater systems of New Zealand.


Subject(s)
Electrolysis , Radiation Monitoring , Radioactive Pollutants/analysis , Scintillation Counting , Tritium/analysis , Calibration , Fresh Water/chemistry , New Zealand , Reproducibility of Results , Sensitivity and Specificity , Water Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...