Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373098

ABSTRACT

Cell identity is determined by the chromatin structure and profiles of gene expression, which are dependent on chromatin accessibility and DNA methylation of the regions critical for gene expression, such as enhancers and promoters. These epigenetic modifications are required for mammalian development and are essential for the establishment and maintenance of the cellular identity. DNA methylation was once thought to be a permanent repressive epigenetic mark, but systematic analyses in various genomic contexts have revealed a more dynamic regulation than previously thought. In fact, both active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. To link methylation signatures of specific genes to their expression profiles, we determined the methyl-CpG configurations of the promoters of five genes switched on and off during murine postnatal brain differentiation by bisulfite-targeted sequencing. Here, we report the structure of significant, dynamic, and stable methyl-CpG profiles associated with silencing or activation of the expression of genes during neural stem cell and brain postnatal differentiation. Strikingly, these methylation cores mark different mouse brain areas and cell types derived from the same areas during differentiation.


Subject(s)
DNA Methylation , Gene Expression Regulation , Animals , Mice , CpG Islands , Epigenesis, Genetic , Cell Differentiation/genetics , Chromatin/genetics , Mammals/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...