Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37239995

ABSTRACT

Sodium ferrous citrate (SFC) is involved in the metabolism of 5-aminolevulinic acid (5-ALA) and enhances its anti-inflammatory effects. The effects of 5-ALA/SFC on inflammation in rats with endotoxin-induced uveitis (EIU) have yet to be elucidated. In this study, during lipopolysaccharide injection, 5-ALA/SFC (10 mg/kg 5-ALA plus 15.7 mg/kg SFC) or 5-ALA (10 or 100 mg/kg) was administered via gastric gavage, wherein we saw that 5-ALA/SFC ameliorated ocular inflammation in EIU rats by suppressing clinical scores; by infiltrating cell counts, aqueous humor protein, and inflammatory cytokine levels; and by improving histopathological scores to the same extent as 100 mg/kg 5-ALA. Immunohistochemistry showed that 5-ALA/SFC suppressed iNOS and COX-2 expression, NF-κB activation, IκB-α degradation, and p-IKKα/ß expression, and activated HO-1 and Nrf2 expression. Therefore, this study has investigated how 5-ALA/SFC reduces inflammation and revealed the pathways involved in EIU rats. 5-ALA/SFC is shown to inhibit ocular inflammation in EIU rats by inhibiting NF-κB and activating the HO-1/Nrf2 pathways.


Subject(s)
NF-kappa B , Uveitis , Rats , Animals , NF-kappa B/metabolism , Endotoxins/toxicity , NF-E2-Related Factor 2/metabolism , Aminolevulinic Acid/pharmacology , Signal Transduction , Lipopolysaccharides/toxicity , Uveitis/chemically induced , Uveitis/drug therapy , Uveitis/metabolism , Inflammation/chemically induced , Inflammation/drug therapy
2.
Photochem Photobiol Sci ; 14(9): 1628-36, 2015 Sep 26.
Article in English | MEDLINE | ID: mdl-26098533

ABSTRACT

Channelrhodopsins have become a focus of interest because of their ability to control neural activity by light, used in a technology called optogenetics. The channelrhodopsin in the eukaryote Chlamydomonas reinhardtii (CrChR-1) is a light-gated cation channel responsible for motility changes upon photo-illumination and a member of the membrane-embedded retinal protein family. Recent crystal structure analysis revealed that CrChR-1 has unique extended modules both at its N- and C-termini compared to other microbial retinal proteins. This study reports the first successful expression of a ChR-1 variant in Escherichia coli as a holoprotein: the ChR-1 variant lacking both the N- and C-termini (CrChR-1_82-308). However, compared to ChR-1 having the extended modules (CrChR-1_1-357), truncation of the termini greatly altered the absorption maximum and photochemical properties, including the pKa values of its charged residues around the chromophore, the reaction rates in the photocycle and the photo-induced ion channeling activity. The results of some experiments regarding ion transport activity suggest that CrChR-1_82-308 has a proton channeling activity even in the dark. On the basis of these results, we discuss the structural and functional roles of the N- and C-terminal extended modules in CrChR-1.


Subject(s)
Chlamydomonas reinhardtii , Rhodopsin/chemistry , Rhodopsin/metabolism , Cell Membrane/metabolism , Cell Membrane/radiation effects , Escherichia coli/genetics , Genetic Variation , Hydrogen-Ion Concentration , Ion Transport , Light , Photochemical Processes , Protons , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Rhodopsin/genetics , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...