Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(23): 7063-7068, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805318

ABSTRACT

High-entropy alloy (HEA) nanoparticles (NPs) have attracted attention in several fields because of their fascinating properties. The high mechanical strength, good thermal stability, and superior corrosion resistance of HEAs, which are derived from their high configurational entropy, are attractive features. Herein, we investigated the thermal stability of FeCoNiCuPd HEA NPs on reduced graphene oxide via in situ transmission electron microscopy observations at elevated temperatures. The HEA NPs maintained their structure, size, and composition at 700 °C, and their size gradually decreased accompanied by the preferential sublimation of Cu. On the contrary, the deterioration of the monometallic Pd NPs begins at temperatures greater than 700 °C according to Ostwald ripening, which involves the migration of adatoms or mobile molecular species. Theoretical calculations revealed that the detachment of adatoms from clusters (i.e., the first step of Ostwald ripening) was suppressed in the case of HEA NPs because of the high-configuration-entropy effect.

2.
Small ; : e2306765, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072797

ABSTRACT

The phenomenon of hydrogen spillover is investigated as a means of realizing a hydrogen-based society for over half a century. Herein, a graphene oxide having a precisely tuned architecture via calcination in air to introduce ether groups onto basal planes along with carbon defects is reported. This material provides specific pathways for the spillover of atomic hydrogen and has practical applications with regard to the synthesis of non-equilibrium solid-solution alloy nanoparticles. A combination of experimental work and simulations confirmed that the presence of ether groups associated with carbon defects facilitated hydrogen spillover within the basal planes of this graphene oxide. This enhanced hydrogen spillover ability, in turn, enables the simultaneous reduction of Ru3+ and Ni2+ ions to form RuNi alloy nanoparticles under hydrogen reduction conditions. Energy dispersive X-ray and X-ray absorption near edge structure simulations establish that this strategy forms unique alloy nanoparticles each comprising a Ru core with a RuNi solid-solution shell having a hexagonal close-packed structure. These non-equilibrium RuNi alloy nanoparticles exhibit greater catalytic activity than monometallic Ru nanoparticles during the hydrolysis of ammonia borane.

3.
ACS Appl Mater Interfaces ; 15(44): 51079-51088, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37879041

ABSTRACT

The accurate positioning of metal-organic frameworks (MOFs) on the surface of other materials has opened up new possibilities for the development of multifunctional devices. We propose here a postfunctionalization approach for three-dimensional (3D)-printed metallic catalytic flow reactors based on MOFs. The Cu-based reactors were immersed into an acid solution containing an organic linker for the synthesis of MOFs, where Cu2+ ions dissolved in situ were assembled to form MOF crystals on the surface of the reactor. The resultant MOF layer served as a promising interface that enabled the deposition of catalytically active metal nanoparticles (NPs). It also acted as an efficient platform to provide carbonous layers via simple pyrolysis under inert gas conditions, which further enabled functionalization with organic modifiers and metal NPs. Cylindrical-shaped catalytic flow reactors with four different cell densities were used to investigate the effect of the structure of the reactors on the catalytic production of H2 from a liquid-phase hydrogen storage material. The activity increased with an increasing internal surface area but decreased in the reactor with the smallest cell size despite its high internal surface area. The results of fluid dynamics studies indicated that the effect of pressure loss becomes more pronounced as the pore size decreases.

4.
JACS Au ; 3(8): 2131-2143, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37654591

ABSTRACT

High-entropy alloy (HEA) nanoparticles (NPs) have attracted significant attention as promising catalysts owing to the various unique synergistic effects originating from the nanometer-scale, near-equimolar mixing of five or more components to produce single-phase solid solutions. However, the study of sub-nanometer HEA clusters having sizes of less than 1 nm remains incomplete despite the possibility of novel functions related to borderline molecular states with discrete quantum energy levels. The present work demonstrates the synthesis of CeO2 nanorods (CeO2-NRs) on which sub-nanometer CoNiCuZnPd HEA clusters were formed with the aid of a pronounced hydrogen spillover effect on readily reducible CeO2 (110) facets. The CoNiCuZnPd HEA sub-nanoclusters exhibited higher activity during the reduction of NO by H2 even at low temperatures compared with the corresponding monometallic catalysts. These clusters also showed a unique structural reversibility in response to repeated exposure to oxidative/reductive conditions, based on the sacrificial oxidation of the non-noble metals. Both experimental and theoretical analyses established that multielement mixing in quantum-sized regions endowed the HEA clusters with entirely novel catalytic properties.

5.
ChemSusChem ; 16(16): e202300283, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37183559

ABSTRACT

Aqueous phase reforming of methanol (APRM) is simple, inexpensive and provides a high hydrogen gravimetric density of 18.8 wt. %, and so is superior to traditional gas-phase reactions performed at relatively high temperatures. In the present work, the interface between Pt nanoparticles and a TiN support was modified using a highly dispersed amorphous LaOx phase. The resulting Pt/LaOx /TiO(N) exhibited enhanced activity and long-term stability during the APRM reaction under base-free conditions compared with Pt catalysts supported on unmodified TiN or crystalline La2 O3 . The interfacial amorphous LaOx phase promoted the deposition of small Pt nanoparticles having a narrow size distribution, and also generated electron-deficient Pt. An assessment of kinetic isotope data and theoretical investigations demonstrated that the cationic Pt nanoparticles facilitated the cleavage of O-H and C-H bonds in methanol while the amorphous LaOx enhanced the dissociation of water, thus enabling the water-gas shift reaction under mild conditions.

6.
Chem Commun (Camb) ; 58(88): 12345-12348, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36260074

ABSTRACT

Al-MIL-101-NH2, which was previously regarded as being inactive as a photocatalyst, produces hydrogen peroxide (H2O2) via O2 reduction under visible-light irradiation, accompanied by efficient suppression of undesired H2O2 decomposition. The low-coordination Lewis acid sites in trimetric Al-oxo clusters are crucial for the electron transfer to O2.

7.
Chem Sci ; 13(27): 8137-8147, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35919430

ABSTRACT

Hydrogen spillover, the migration of dissociated hydrogen atoms from noble metals to their support materials, is a ubiquitous phenomenon and is widely utilized in heterogeneous catalysis and hydrogen storage materials. However, in-depth understanding of the migration of spilled hydrogen over different types of supports is still lacking. Herein, hydrogen spillover in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was elucidated by combining systematic characterization methods involving various in situ techniques, kinetic analysis, and density functional theory calculations. TiO2 and CeO2 were proven to be promising platforms for the synthesis of non-equilibrium RuNi binary solid solution alloy nanoparticles displaying a synergistic promotional effect in the hydrolysis of ammonia borane. Such behaviour was driven by the simultaneous reduction of both metal cations under a H2 atmosphere over TiO2 and CeO2, in which hydrogen spillover favorably occurred over their surfaces rather than within their bulk phases. Conversely, hydrogen atoms were found to preferentially migrate within the bulk prior to the surface over WO3. Thus, the reductions of both metal cations occurred individually on WO3, which resulted in the formation of segregated NPs with no activity enhancement.

8.
Environ Sci Technol ; 56(4): 2617-2625, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35098712

ABSTRACT

Fenton reaction has important implications in biology- and environment-related remediation. Hydroxyl radicals (•OH) and hydroxide (OH-) were formed by a reaction between Fe(II) and hydrogen peroxide (H2O2). The acidic H2O2/Fe(II/III) redox-induced low H2O2 utilization efficiency is the bottleneck of Fenton reaction. Electron paramagnetic resonance, surface-enhanced Raman scattering, and density functional theory calculation indicate that the unpaired electrons in the defects of carbon quantum dots (CQDs) and the carboxylic groups at the edge have a synergistic effect on CQDs Fenton-like catalysis. This leads to a 33-fold higher H2O2 utilization efficiency in comparison with Fe(II)/H2O2 Fenton reaction, and the pseudo-first-order reaction rate constant (kobs) increases 38-fold that of Fe(III)/H2O2 under equivalent conditions. The replacement of acidic H2O2/Fe(II/III) redox with CQD-mediated Fe(II/III) redox improves the sluggish Fe(II) generation. Highly effective production of •OH in CQDs-Fe(III)/H2O2 dramatically decreases the selectivity of toxic intermediate benzoquinone. The inorganic ions and dissolved organic matter (DOM) in real groundwater show negligible effects on the CQDs Fenton-like catalysis process. This work presents a process with a higher efficiency of utilization of H2O2in situ chemical oxidation (ISCO) to remove persistent organic pollutants.


Subject(s)
Hydrogen Peroxide , Quantum Dots , Carbon , Catalysis , Ferric Compounds , Ferrous Compounds , Oxidation-Reduction
9.
ACS Appl Mater Interfaces ; 14(1): 2291-2300, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34967219

ABSTRACT

Hydrogen spillover can assist the introduction of defects such as Ti3+ and concomitant oxygen vacancies (VO) in a TiO2 crystal, thereby inducing a new level below the conduction band to improve the conductivity of photogenerated electrons and the visible light absorption property of TiO2. Meanwhile, crystal facet engineering offers a promising approach to achieve improved activity by influencing the recombination step of the photogenerated electrons and holes. In this study, with the aim of achieving enhanced visible light-driven photocatalytic activity, rutile TiO2 nanorods with different aspect ratios were synthesized by crystal facet engineering, and Pt-deposited TiO2-x nanorods (Pt/TNR) were then obtained via reduction treatment assisted by hydrogen spillover. The reduction treatment at 200 °C induced the formation of surface Ti3+ exclusively, whereas surface Ti3+ and VO were formed by performing the reduction at 600 °C. The Pt/TNR with a higher aspect ratio reduced at 200 °C exhibited the highest activity in photocatalytic H2 production under visible light irradiation owing to the synergistic effect of the introduction of Ti3+ defects and the spatial charge carrier separation induced by crystal facet engineering.

10.
ACS Appl Mater Interfaces ; 13(41): 48669-48678, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34615345

ABSTRACT

Defect engineering of metal oxides is a facile and promising strategy to improve their photocatalytic activity. In the present study, Pt/TiO2-x was prepared by a reduction treatment assisted by hydrogen spillover to pure rutile, anatase, and brookite and was subsequently used for hydrogen production from an aqueous methanol solution. With increasing reduction temperature, the photocatalytic activity of the rutile Pt/TiO2-x increased substantially, whereas the activity of anatase Pt/TiO2-x decreased and that of brookite Pt/TiO2-x was independent of the treatment temperature. Electron-spin resonance analysis revealed that rutile and brookite possess similar defect sites (Ti3+ and concomitant oxygen vacancy) after the reduction at 600 °C, whereas different resonance signals were observed for anatase after the reduction at 600 °C. During the reduction process, electrons donated from spillover hydrogen migrate between the conduction band and the inherent midgap states. This research demonstrates that the depth of the inherent midgap states, depending on the crystal phases, influences the generation of defects, which play a key role in the photocatalytic performance of Pt/TiO2-x.

11.
Nat Commun ; 12(1): 3884, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34162865

ABSTRACT

High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements.

12.
Langmuir ; 37(17): 5376-5384, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33881888

ABSTRACT

Effects of morphology and exposed crystal planes of NiOx-decorated CeO2 (NiCeO2) nanostructured catalysts on activity during CO2 methanation were examined, using nanorod (NR), nanocube (NC), and nanooctahedron (NO) structures. The NiCeO2 nanorods (NiCeO2-NR) showed superior activity to NiCeO2-NC and NiCeO2-NO along with excellent selectivity for CH4. This material also demonstrated exceptional durability, with no significant loss of catalytic activity or structural change after use. Comprehensive physicochemical characterization as well as density functional theory calculations determined that the high performance of the NiCeO2-NR was closely related to the large quantity of surface oxygen vacancies and the high degree of reversibility associated with the Ce4+ ↔ Ce3+ redox cycle of the support. These effects originate from the enhanced reactivity of oxygen atoms on the (110) surfaces of the oxide compared with the (100) and (111) surfaces. This information is expected to assist in the rational design of practical catalysts for the activation of CO2 molecules and other important transformations.

13.
ChemSusChem ; 14(10): 2180-2187, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33780153

ABSTRACT

Loading of molecular catalyst on the surface of semiconductors is an attractive way to boost the water oxidation activity. As active sites, molecular water oxidation cocatalysts show increasing attraction and application possibility. In order to compare the advantages between molecular catalysts with non-noble and noble metals, the loading of the Fe(salen) and Ru(salen) as cocatalyst precursors on the surface of Ti-Fe2 O3 was investigated Quasi-Fe(salen) and Ru(salen) improved the photocurrent density by 1.5 and 1.7 times compared to that of the original Ti-Fe2 O3 photoanode, respectively. The quasi-Fe(salen) could improve the conductivity and reaction kinetics on the photoanode surface. By contrast, the notable advancements could be attributed to more reaction sites for quasi-Ru(salen) as cocatalysts. Thus, non-noble quasi-Fe(salen) is a promising cocatalyst to replace the noble metal salen, and further optimization can be expected with regard to the precise control of reaction sites.

14.
Sci Rep ; 11(1): 530, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436711

ABSTRACT

Biodiesel is of high interest due to increased demand for energy with the concern regarding more sustainable production processes. However, an inevitable by-product is glycerol. Hence, the conversion of this by-product to higher-value chemicals, especially 1,3-propanediol (1,3-PDO) via glycerol hydrogenolysis reaction, is one of the most effective pathways towards a profitable process. In general, this process is catalyzed by a highly active Pt-based catalyst supported on γ-Al2O3. However, its low 1,3-PDO selectivity and stability due to surface deactivation of such catalysts remained. This led to the surface modification by WOx to improve both the selectivity by means of the increased Brønsted acidity and the stability in terms of Pt leaching-resistance. Hence, we applied experimental and density functional theory (DFT)-based techniques to study the fundamentals of how WOx modified the catalytic performance in the Pt/γ-Al2O3 catalyst and provided design guidelines. The effects of WOx promoter on improved activity were due to the shifting of the total density of states towards the antibonding region evident by the total density of states (TDOS) profile. On the improved 1,3-PDO selectivity, the main reason was the increasing number of Brønsted acid sites due to the added WOx promoter. Interestingly, the stability improvement was due to the strong metal-support interaction (SMSI) that occurred in the catalyst, like typical high leaching-resistant catalysts. Also, the observed strong metal-support-promoter interaction (SMSPI) is an additional effect preventing leaching. The SMSPI stemmed from additional bonding between the WOx species and the Pt active site, which significantly strengthened Pt adsorption to support and a high electron transfer from both Pt and Al2O3 to WOx promoter. This suggested that the promising promoter for our reaction performed in the liquid phase would improve the stability if SMSI occurred, where the special case of the WOx promoter would even highly improve the stability through SMSPI. Nevertheless, various promoters that can promote SMSPI need investigations.

15.
Nanoscale Adv ; 3(3): 823-835, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-36133853

ABSTRACT

We report the first preparation of small gold-nickel (AuNi) bimetallic nanoparticles (<5 nm) supported on titania by the method of galvanic replacement reaction (GRR), evidenced by the replacement of Ni atoms by Au atoms according to the stoichiometry of the reaction. We showed that this preparation method allowed not only the control of the gold and nickel contents in the samples, but also the formation of small bimetallic nanoparticles with strained core-shell structures, as revealed by aberration-corrected scanning transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy mapping. The catalytic characterization by the probe reaction of semi-hydrogenation of butadiene showed that the resulting nickel-based nanocatalysts containing a small amount of gold exhibited higher selectivity to butenes than pure nickel catalysts and a high level of activity, closer to that of pure nickel catalysts than to that of pure gold catalysts. These improved catalytic performances could not be explained by a mere structural model of simple core-shell structure of the nanoparticles. Instead, they could come from the incorporation of Ni within the gold surface and/or from surface lattice relaxation and subsurface misfit defects.

16.
Chem Asian J ; 15(13): 2005-2014, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32395889

ABSTRACT

Catalytic diesel soot combustion was examined using a series of Mn2 O3 catalysts with different morphologies, including plate, prism, hollow spheres and powders. The plate-shaped Mn2 O3 (Mn2 O3 -plate) exhibited superior carbon soot combustion activity compared to the prism-shaped, hollow-structured and powdery Mn2 O3 under both tight and loose contact modes at soot combustion temperatures (T50 ) of 327 °C and 457 °C, respectively. Comprehensive characterization studies using scanning electron microscopy, scanning transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction and oxygen release measurements, revealed that the improved activity of Mn2 O3 -plate was mainly attributed to the high oxygen release rate of surface-adsorbed active oxygen species, which originated from oxygen vacancy sites introduced during the catalyst preparation, rather than specific surface-exposed planes. The study provides new insights for the design and synthesis of efficient oxidation catalysts for carbon soot combustion as well as for other oxidation reactions of harmful hydrocarbon compounds.

17.
Phys Chem Chem Phys ; 22(26): 14404-14414, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32436501

ABSTRACT

As an environmentally friendly and renewable energy source, hydrogen peroxide (H2O2) could be produced photocatalytically through selective two-electron reduction of O2 using effective photocatalysts. Metal organic frameworks (MOFs), as hybrid porous materials consisting of organic linkers and metal oxide clusters, have aroused great interest in the design of effective catalysts for photocatalysis under visible light irradiation due to their unique properties, such as large surface area, good chemical stability, and diverse and tunable chemical components. In this perspective, we highlight our recent progress in the application of various MOF-based nanomaterials for photocatalytic H2O2 production from the selective two-electron reduction of O2 in a single-phase system (acetonitrile) and two-phase system (water/benzyl alcohol). Photocatalytic H2O2 production in the single-phase system achieved a higher activity using NiO as a cocatalyst of the MOF rather than Pt. Photocatalytic H2O2 production in the two-phase system using various hydrophobic MOFs showed further improved activity compared to the single-phase system. It has been possible to design a hydrophobic MOF-based photocatalyst with high activity and stability under recycling conditions. These studies gathered in this perspective revealed the novel application of MOFs in the field of energy production.

18.
Nanoscale ; 12(22): 11908-11915, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32467961

ABSTRACT

MoS2 has been investigated as a low-cost alternative to Pt in the electrochemical hydrogen evolution reaction. One of the promising methods to further activate MoS2 is phase engineering. MoS2 generally exhibits two kinds of crystalline phases: hexagonal 2H phase and octahedral 1T phase. 1T-MoS2 exhibits much better chemical/physical properties than natural semiconductor 2H-MoS2. However, 1T-MoS2 is metastable and its synthesis is still a challenge. Hybrid 1T/2H-MoS2 has been synthesized under relatively mild conditions, but controlling the 1T/2H ratio is still an issue which has not been discussed in detail. In this study, the synthesis methods of hybrid phase 1T/2H-MoS2 with controllable 1T concentration are investigated. The electrochemical hydrogen evolution reaction is then evaluated for 1T/2H-MoS2 with different 1T concentrations by performing both experiments and theoretical calculations.

19.
Nanoscale ; 12(21): 11333-11363, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32285073

ABSTRACT

The development of advanced materials for heterogeneous catalytic applications requires fine control over the synthesis and structural parameters of the active site. Mesoporous silica materials have attracted increasing attention to be considered as an important class of nanostructured support materials in heterogeneous catalysis. Their large surface area, well-defined porous architecture and ability to incorporate metal atoms within the mesopores lead them to be a promising support material for designing a variety of different catalysts. In particular, SBA-15 mesoporous silica has its broad applicability in catalysis because of its comparatively thicker walls leading to higher thermal and mechanical stability. In this review article, various strategies to functionalize SBA-15 mesoporous silica have been reviewed with a view to evaluating its efficacy in different catalytic transformation reactions. Special attention has been given to the molecular engineering of the silica surface, within the framework and within the hexagonal mesoporous channels for anchoring metal oxides, single-site species and metal nanoparticles (NPs) serving as catalytically active sites.

20.
Langmuir ; 36(5): 1174-1182, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31957455

ABSTRACT

Phase engineering has been recognized as a promising method for boosting the catalytic activity of molybdenum sulfide (MoS2) in the field of electrocatalysts and photocatalysts. The metallic 1T-MoS2 exhibits much higher catalytic activity than natural semiconducting 2H-MoS2 but suffers from harsh synthetic conditions and metastable physical/chemical properties. The hybrid 1T/2H phase MoS2 shows higher catalytic activity than the 2H-MoS2 and exhibits better stability than the 1T-MoS2, which is more favorable than the 2H-MoS2 in the photocatalytic reactions. In this study, we report a hydrothermal synthesis of the hybrid 1T/2H-MoS2 phase coupled with SiC as a heterojunction photocatalyst for 4-nitrophenol (4-NP) degradation. SiC acts as a counterpart of the heterojunction structure and a morphology modifier, which dramatically promotes the reaction rate and visible light responsibility, providing new candidates and strategies in photocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...