Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Hyperthermia ; 41(1): 2349059, 2024.
Article in English | MEDLINE | ID: mdl-38754994

ABSTRACT

PURPOSE: Radiomics may aid in predicting prognosis in patients with colorectal liver metastases (CLM). Consistent data is available on CT, yet limited data is available on MRI. This study assesses the capability of MRI-derived radiomic features (RFs) to predict local tumor progression-free survival (LTPFS) in patients with CLMs treated with microwave ablation (MWA). METHODS: All CLM patients with pre-operative Gadoxetic acid-MRI treated with MWA in a single institution between September 2015 and February 2022 were evaluated. Pre-procedural information was retrieved retrospectively. Two observers manually segmented CLMs on T2 and T1-Hepatobiliary phase (T1-HBP) scans. After inter-observer variability testing, 148/182 RFs showed robustness on T1-HBP, and 141/182 on T2 (ICC > 0.7).Cox multivariate analysis was run to establish clinical (CLIN-mod), radiomic (RAD-T1, RAD-T2), and combined (COMB-T1, COMB-T2) models for LTPFS prediction. RESULTS: Seventy-six CLMs (43 patients) were assessed. Median follow-up was 14 months. LTP occurred in 19 lesions (25%).CLIN-mod was composed of minimal ablation margins (MAMs), intra-segment progression and primary tumor grade and exhibited moderately high discriminatory power in predicting LTPFS (AUC = 0.89, p = 0.0001). Both RAD-T1 and RAD-T2 were able to predict LTPFS: (RAD-T1: AUC = 0.83, p = 0.0003; RAD-T2: AUC = 0.79, p = 0.001). Combined models yielded the strongest performance (COMB-T1: AUC = 0.98, p = 0.0001; COMB-T2: AUC = 0.95, p = 0.0003). Both combined models included MAMs and tumor regression grade; COMB-T1 also featured 10th percentile of signal intensity, while tumor flatness was present in COMB-T2. CONCLUSION: MRI-based radiomic evaluation of CLMs is feasible and potentially useful for LTP prediction. Combined models outperformed clinical or radiomic models alone for LTPFS prediction.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Magnetic Resonance Imaging , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Aged , Microwaves/therapeutic use , Retrospective Studies , Disease Progression , Adult , Radiomics
2.
Cancers (Basel) ; 16(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473296

ABSTRACT

PURPOSE: Different ML models were compared to predict toxicity in RT on a large cohort (n = 1314). METHODS: The endpoint was RTOG G2/G3 acute toxicity, resulting in 204/1314 patients with the event. The dataset, including 25 clinical, anatomical, and dosimetric features, was split into 984 for training and 330 for internal tests. The dataset was standardized; features with a high p-value at univariate LR and with Spearman ρ>0.8 were excluded; synthesized data of the minority were generated to compensate for class imbalance. Twelve ML methods were considered. Model optimization and sequential backward selection were run to choose the best models with a parsimonious feature number. Finally, feature importance was derived for every model. RESULTS: The model's performance was compared on a training-test dataset over different metrics: the best performance model was LightGBM. Logistic regression with three variables (LR3) selected via bootstrapping showed performances similar to the best-performing models. The AUC of test data is slightly above 0.65 for the best models (highest value: 0.662 with LightGBM). CONCLUSIONS: No model performed the best for all metrics: more complex ML models had better performances; however, models with just three features showed performances comparable to the best models using many (n = 13-19) features.

3.
Radiother Oncol ; 194: 110183, 2024 May.
Article in English | MEDLINE | ID: mdl-38423138

ABSTRACT

BACKGROUND: Toxicity after whole breast Radiotherapy is a relevant issue, impacting the quality-of-life of a not negligible number of patients. We aimed to develop a Normal Tissue Complication Probability (NTCP) model predicting late toxicities by combining dosimetric parameters of the breast dermis and clinical factors. METHODS: The skin structure was defined as the outer CT body contour's 5 mm inner isotropic expansion. It was retrospectively segmented on a large mono-institutional cohort of early-stage breast cancer patients enrolled between 2009 and 2017 (n = 1066). Patients were treated with tangential-field RT, delivering 40 Gy in 15 fractions to the whole breast. Toxicity was reported during Follow-Up (FU) using SOMA/LENT scoring. The study endpoint was moderate-severe late side effects consisting of Fibrosis-Atrophy-Telangiectasia-Pain (FATP G ≥ 2) developed within 42 months after RT completion. A machine learning pipeline was designed with a logistic model combining clinical factors and absolute skin DVH (cc) parameters as output. RESULTS: The FATP G2 + rate was 3.8 %, with 40/1066 patients experiencing side effects. After the preprocessing of variables, a cross-validation was applied to define the best-performing model. We selected a 4-variable model with Post-Surgery Cosmetic alterations (Odds Ratio, OR = 7.3), Aromatase Inhibitors (as a protective factor with OR = 0.45), V20 Gy (50 % of the prescribed dose, OR = 1.02), and V42 Gy (105 %, OR = 1.09). Factors were also converted into an adjusted V20Gy. CONCLUSIONS: The association between late reactions and skin DVH when delivering 40 Gy/15 fr was quantified, suggesting an independent role of V20 and V42. Few clinical factors heavily modulate the risk.


Subject(s)
Breast Neoplasms , Radiotherapy Dosage , Skin , Humans , Female , Breast Neoplasms/radiotherapy , Middle Aged , Skin/radiation effects , Retrospective Studies , Aged , Radiation Injuries/etiology , Adult , Organs at Risk/radiation effects , Aged, 80 and over
4.
Radiol Med ; 128(7): 799-807, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37289267

ABSTRACT

PURPOSE: To explore the variation of the discriminative power of CT (Computed Tomography) radiomic features (RF) against image discretization/interpolation in predicting early distant relapses (EDR) after upfront surgery. MATERIALS AND METHODS: Data of 144 patients with pre-surgical high contrast CT were processed consistently with IBSI (Image Biomarker Standardization Initiative) guidelines. Image interpolation/discretization parameters were intentionally changed, including cubic voxel size (0.21-27 mm3) and binning (32-128 grey levels) in a 15 parameter's sets. After excluding RF with poor inter-observer delineation agreement (ICC < 0.80) and not negligible inter-scanner variability, the variation of 80 RF against discretization/interpolation was first quantified. Then, their ability in classifying patients with early distant relapses (EDR, < 10 months, previously assessed at the first quartile value of time-to-relapse) was investigated in terms of AUC (Area Under Curve) variation for those RF significantly associated to EDR. RESULTS: Despite RF variability against discretization/interpolation parameters was large and only 30/80 RF showed %COV < 20 (%COV = 100*STDEV/MEAN), AUC changes were relatively limited: for 30 RF significantly associated with EDR (AUC values around 0.60-0.70), the mean values of SD of AUC variability and AUC range were 0.02 and 0.05 respectively. AUC ranges were between 0.00 and 0.11, with values ≤ 0.05 in 16/30 RF. These variations were further reduced when excluding the extreme values of 32 and 128 for grey levels (Average AUC range 0.04, with values between 0.00 and 0.08). CONCLUSIONS: The discriminative power of CT RF in the prediction of EDR after upfront surgery for pancreatic cancer is relatively invariant against image interpolation/discretization within a large range of voxel sizes and binning.


Subject(s)
Pancreatic Neoplasms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Image Processing, Computer-Assisted/methods , Pancreatic Neoplasms
5.
Eur J Nucl Med Mol Imaging ; 50(5): 1329-1336, 2023 04.
Article in English | MEDLINE | ID: mdl-36604325

ABSTRACT

PURPOSE/OBJECTIVE: The purpose of the study is to externally validate published 18F-FDG-PET radiomic models for outcome prediction in patients with oropharyngeal cancer treated with chemoradiotherapy. MATERIAL/METHODS: Outcome data and pre-radiotherapy PET images of 100 oropharyngeal cancer patients (stage IV:78) treated with concomitant chemotherapy to 66-69 Gy/30 fr were available. Tumors were segmented using a previously validated semi-automatic method; 450 radiomic features (RF) were extracted according to IBSI (Image Biomarker Standardization Initiative) guidelines. Only one model for cancer-specific survival (CSS) prediction was suitable to be independently tested, according to our criteria. This model, in addition to HPV status, SUVmean and SUVmax, included two independent meta-factors (Fi), resulting from combining selected RF clusters. In a subgroup of 66 patients with complete HPV information, the global risk score R was computed considering the original coefficients and was tested by Cox regression as predictive of CSS. Independently, only the radiomic risk score RF derived from Fi was tested on the same subgroup to learn about the radiomics contribution to the model. The metabolic tumor volume (MTV) was also tested as a single predictor and its prediction performances were compared to the global and radiomic models. Finally, the validation of MTV and the radiomic score RF were also tested on the entire dataset. RESULTS: Regarding the analysis of the subgroup with HPV information, with a median follow-up of 41.6 months, seven patients died due to cancer. R was confirmed to be associated to CSS (p value = 0.05) with a C-index equal 0.75 (95% CI=0.62-0.85). The best cut-off value (equal to 0.15) showed high ability in patient stratification (p=0.01, HR=7.4, 95% CI=1.6-11.4). The 5-year CSS for R were 97% (95% CI: 93-100%) vs 74% (56-92%) for low- and high-risk groups, respectively. RF and MTV alone were also significantly associated to CSS for the subgroup with an almost identical C-index. According to best cut-off value (RF>0.12 and MTV>15.5cc), the 5-year CSS were 96% (95% CI: 89-100%) vs 65% (36-94%) and 97% (95% CI: 88-100%) vs 77% (58-93%) for RF and MTV, respectively. Results regarding RF and MTV were confirmed in the overall group. CONCLUSION: A previously published PET radiomic model for CSS prediction was independently validated. Performances of the model were similar to the ones of using only the MTV, without improvement of prediction accuracy.


Subject(s)
Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Fluorodeoxyglucose F18/metabolism , Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/radiotherapy , Oropharyngeal Neoplasms/metabolism , Prognosis , Chemoradiotherapy , Retrospective Studies , Positron Emission Tomography Computed Tomography
6.
Updates Surg ; 75(2): 273-279, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36114920

ABSTRACT

Radiomics is an emerging field of investigation in medicine consisting in the extraction of quantitative features from conventional medical images and exploring their potentials in improving diagnosis, prognosis and outcome prediction after therapy. Clinical applications are still limited, mostly due to reproducibility and repeatability issues as well as to limited interpretability of predictive radiomic-based features/signatures. In the specific case of gastroesophageal junction (GEJ) adenocarcinoma, the expectancies are particularly high, mainly due to its increasing incidence and to the limited performance of conventional imaging techniques in assessing correct diagnosis and accurate pre-surgical tumor characterization. Accordingly, current literature was reviewed, emphasizing the methodological quality. In addition, papers were scored according to the Radiomic Quality Score (RQS), weighting more the clinical applicability and generalizability of the resulting models. According to the criteria of the search, only two papers were retained: the resulting technical quality was relatively high for both, while the corresponding RQS were 15 and 19 (on a scale of 31). Although the potentials of radiomics in the setting of GEJ adenocarcinoma are relevant, they remain largely unexplored, warranting an urgent need of high-quality, possibly prospective, multicenter studies.


Subject(s)
Adenocarcinoma , Humans , Prospective Studies , Reproducibility of Results , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/therapy , Esophagogastric Junction/diagnostic imaging
7.
Strahlenther Onkol ; 199(5): 477-484, 2023 05.
Article in English | MEDLINE | ID: mdl-36580087

ABSTRACT

OBJECTIVES: To assess the potential of radiomic features (RFs) extracted from simulation computed tomography (CT) images in discriminating local progression (LP) after stereotactic body radiotherapy (SBRT) in the management of lung oligometastases (LOM) from colorectal cancer (CRC). MATERIALS AND METHODS: Thirty-eight patients with 70 LOM treated with SBRT were analyzed. The largest LOM was considered as most representative for each patient and was manually delineated by two blinded radiation oncologists. In all, 141 RFs were extracted from both contours according to IBSI (International Biomarker Standardization Initiative) recommendations. Based on the agreement between the two observers, 134/141 RFs were found to be robust against delineation (intraclass correlation coefficient [ICC] > 0.80); independent RFs were then assessed by Spearman correlation coefficients. The association between RFs and LP was assessed with Mann-Whitney test and univariate logistic regression (ULR): the discriminative power of the most informative RF was quantified by receiver-operating characteristics (ROC) analysis through area under curve (AUC). RESULTS: In all, 15/38 patients presented LP. Median time to progression was 14.6 months (range 2.4-66 months); 5/141 RFs were significantly associated to LP at ULR analysis (p < 0.05); among them, 4 RFs were selected as robust and independent: Statistical_Variance (AUC = 0.75, p = 0.002), Statistical_Range (AUC = 0.72, p = 0.013), Grey Level Size Zone Matrix (GLSZM) _zoneSizeNonUniformity (AUC = 0.70, p = 0.022), Grey Level Dependence Zone Matrix (GLDZM) _zoneDistanceEntropy (AUC = 0.70, p = 0.026). Importantly, the RF with the best performance (Statisical_Variance) is simply representative of density heterogeneity within LOM. CONCLUSION: Four RFs extracted from planning CT were significantly associated with LP of LOM from CRC treated with SBRT. Results encourage further research on a larger population aiming to define a usable radiomic score combining the most predictive RFs and, possibly, additional clinical features.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Radiosurgery , Humans , Radiosurgery/methods , Pilot Projects , Tomography, X-Ray Computed , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Lung/pathology , Recurrence , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/radiotherapy , Retrospective Studies
8.
Eur Radiol ; 33(6): 4412-4421, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36547673

ABSTRACT

OBJECTIVES: To predict tumor grade (G1 vs. G2/3), presence of distant metastasis (M+), metastatic lymph nodes (N+), and microvascular invasion (VI) of pancreatic neuroendocrine neoplasms (PanNEN) based on preoperative CT radiomic features (RFs), by applying a machine learning approach aimed to limit overfit. METHODS: This retrospective study included 101 patients who underwent surgery for PanNEN; the entire population was split into training (n = 70) and validation cohort (n = 31). Based on a previously validated methodology, after tumor segmentation on contrast-enhanced CT, RFs were extracted from unenhanced CT images. In addition, conventional radiological and clinical features were combined with RFs into multivariate logistic regression models using minimum redundancy and a bootstrap-based machine learning approach. For each endpoint, models were trained and validated including only RFs (RF_model), and both (radiomic and clinicoradiological) features (COMB_model). RESULTS: Twenty-five patients had G2/G3 tumor, 37 N+, and 14 M+ and 38 were shown to have VI. From a total of 182 RFs initially extracted, few independent radiomic and clinicoradiological features were identified. For M+ and G, the resulting models showed moderate to high performances: areas under the curve (AUC) for training/validation cohorts were 0.85/0.77 (RF_model) and 0.81/0.81 (COMB_model) for M+ and 0.67/0.72 and 0.68/0.70 for G. Concerning N+ and VI, only the COMB_model could be built, with poorer performance for N+ (AUC = 0.72/0.61) compared to VI (0.82/0.75). For all endpoints, the negative predictive value was good (≥ 0.75). CONCLUSIONS: Combining few radiomic and clinicoradiological features resulted in presurgical prediction of histological characteristics of PanNENs. Despite the limited risk of overfit, external validations are warranted. KEY POINTS: • Histology is the only tool currently available allowing characterization of PanNEN biological characteristics important for prognostic assessment; significant limitations to this approach exist. • Based upon preoperative contrast-enhanced CT images, a machine learning approach optimized to favor models' generalizability was successfully applied to train predictive models for tumor grading (G1 vs. G2/3), microvascular invasion, metastatic lymph nodes, and distant metastatic spread. • Moderate to high discriminative models (AUC: 0.67-0.85) based on few parameters (≤ 3) showing high negative predictive value (0.75-0.98) were generated and then successfully validated.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Tomography, X-Ray Computed/methods , Retrospective Studies , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Prognosis
9.
Phys Med ; 100: 142-152, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35839667

ABSTRACT

PURPOSE: To develop and validate an automated segmentation tool for COVID-19 lung CTs. To combine it with densitometry information in identifying Aerated, Intermediate and Consolidated Volumes in admission (CT1) and follow up CT (CT3). MATERIALS AND METHODS: An Atlas was trained on manually segmented CT1 of 250 patients and validated on 10 CT1 of the training group, 10 new CT1 and 10 CT3, by comparing DICE index between automatic (AUTO), automatic-corrected (AUTOMAN) and manual (MAN) contours. A previously developed automatic method was applied on HU lung density histograms to quantify Aerated, Intermediate and Consolidated Volumes. Volumes of subregions in validation CT1 and CT3 were quantified for each method. RESULTS: In validation CT1/CT3, manual correction of automatic contours was not necessary in 40% of cases. Mean DICE values for both lungs were 0.94 for AUTOVsMAN and 0.96 for AUTOMANVsMAN. Differences between Aerated and Intermediate Volumes quantified with AUTOVsMAN contours were always < 6%. Consolidated Volumes showed larger differences (mean: -95 ± 72 cc). If considering AUTOMANVsMAN volumes, differences got further smaller for Aerated and Intermediate, and were drastically reduced for consolidated Volumes (mean: -36 ± 25 cc). The average time for manual correction of automatic lungs contours on CT1 was 5 ± 2 min. CONCLUSIONS: An Atlas for automatic segmentation of lungs in COVID-19 patients was developed and validated. Combined with a previously developed method for lung densitometry characterization, it provides a fast, operator-independent way to extract relevant quantitative parameters with minimal manual intervention.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Densitometry , Humans , Longitudinal Studies , Lung/diagnostic imaging
10.
Front Oncol ; 12: 983984, 2022.
Article in English | MEDLINE | ID: mdl-36761419

ABSTRACT

Purpose: To assess dosimetry predictors of gastric and duodenal toxicities for locally advanced pancreatic cancer (LAPC) patients treated with chemo-radiotherapy in 15 fractions. Methods: Data from 204 LAPC patients treated with induction+concurrent chemotherapy and radiotherapy (44.25 Gy in 15 fractions) were available. Forty-three patients received a simultaneous integrated boost of 48-58 Gy. Gastric/duodenal Common Terminology Criteria for Adverse Events v. 5 (CTCAEv5) Grade ≥2 toxicities were analyzed. Absolute/% duodenal and stomach dose-volume histograms (DVHs) of patients with/without toxicities were compared: the most predictive DVH points were identified, and their association with toxicity was tested in univariate and multivariate logistic regressions together with near-maximum dose (D0.03) and selected clinical variables. Results: Toxicity occurred in 18 patients: 3 duodenal (ulcer and duodenitis) and 10 gastric (ulcer and stomatitis); 5/18 experienced both. At univariate analysis, V44cc (duodenum: p = 0.02, OR = 1.07; stomach: p = 0.01, OR = 1.12) and D0.03 (p = 0.07, OR = 1.19; p = 0.008, OR = 1.12) were found to be the most predictive parameters. Stomach/duodenum V44Gy and stomach D0.03 were confirmed at multivariate analysis and found to be sufficiently robust at internal, bootstrap-based validation; the results regarding duodenum D0.03 were less robust. No clinical variables or %DVH was significantly associated with toxicity. The best duodenum cutoff values were V44Gy < 9.1 cc (and D0.03 < 47.6 Gy); concerning the stomach, they were V44Gy < 2 cc and D0.03 < 45 Gy. The identified predictors showed a high negative predictive value (>94%). Conclusion: In a large cohort treated with hypofractionated radiotherapy for LAPC, the risk of duodenal/gastric toxicities was associated with duodenum/stomach DVH. Constraining duodenum V44Gy < 9.1 cc, stomach V44Gy < 2 cc, and stomach D0.03 < 45 Gy should keep the toxicity rate at approximately or below 5%. The association with duodenum D0.03 was not sufficiently robust due to the limited number of events, although results suggest that a limit of 45-46 Gy should be safe.

11.
Cancers (Basel) ; 13(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638421

ABSTRACT

Despite careful selection, the recurrence rate after upfront surgery for pancreatic adenocarcinoma can be very high. We aimed to construct and validate a model for the prediction of early distant recurrence (<12 months from index surgery) after upfront pancreaticoduodenectomy. After exclusions, 147 patients were retrospectively enrolled. Preoperative clinical and radiological (CT-based) data were systematically evaluated; moreover, 182 radiomics features (RFs) were extracted. Most significant RFs were selected using minimum redundancy, robustness against delineation uncertainty and an original machine learning bootstrap-based method. Patients were split into training (n = 94) and validation cohort (n = 53). Multivariable Cox regression analysis was first applied on the training cohort; the resulting prognostic index was then tested in the validation cohort. Clinical (serum level of CA19.9), radiological (necrosis), and radiomic (SurfAreaToVolumeRatio) features were significantly associated with the early resurge of distant recurrence. The model combining these three variables performed well in the training cohort (p = 0.0015, HR = 3.58, 95%CI = 1.98-6.71) and was then confirmed in the validation cohort (p = 0.0178, HR = 5.06, 95%CI = 1.75-14.58). The comparison of survival curves between low and high-risk patients showed a p-value <0.0001. Our model may help to better define resectability status, thus providing an actual aid for pancreatic adenocarcinoma patients' management (upfront surgery vs. neoadjuvant chemotherapy). Independent validations are warranted.

12.
Phys Med ; 85: 63-71, 2021 May.
Article in English | MEDLINE | ID: mdl-33971530

ABSTRACT

PURPOSE: To train and validate a predictive model of mortality for hospitalized COVID-19 patients based on lung densitometry. METHODS: Two-hundred-fifty-one patients with respiratory symptoms underwent CT few days after hospitalization. "Aerated" (AV), "consolidated" (CV) and "intermediate" (IV) lung sub-volumes were quantified by an operator-independent method based on individual HU maximum gradient recognition. AV, CV, IV, CV/AV, IV/AV, and HU of the first peak position were extracted. Relevant clinical parameters were prospectively collected. The population was composed by training (n = 166) and validation (n = 85) consecutive cohorts, and backward multi-variate logistic regression was applied on the training group to build a CT_model. Similarly, models including only clinical parameters (CLIN_model) and both CT/clinical parameters (COMB_model) were developed. Model's performances were assessed by goodness-of-fit (H&L-test), calibration and discrimination. Model's performances were tested in the validation group. RESULTS: Forty-three patients died (25/18 in training/validation). CT_model included AVmax (i.e. maximum AV between lungs), CV and CV/AE, while CLIN_model included random glycemia, C-reactive protein and biological drugs (protective). Goodness-of-fit and discrimination were similar (H&L:0.70 vs 0.80; AUC:0.80 vs 0.80). COMB_model including AVmax, CV, CV/AE, random glycemia, biological drugs and active cancer, outperformed both models (H&L:0.91; AUC:0.89, 95%CI:0.82-0.93). All models showed good calibration (R2:0.77-0.97). Despite several patient's characteristics were different between training and validation cohorts, performances in the validation cohort confirmed good calibration (R2:0-70-0.81) and discrimination for CT_model/COMB_model (AUC:0.72/0.76), while CLIN_model performed worse (AUC:0.64). CONCLUSIONS: Few automatically extracted densitometry parameters with clear functional meaning predicted mortality of COVID-19 patients. Combined with clinical features, the resulting predictive model showed higher discrimination/calibration.


Subject(s)
COVID-19 , Densitometry , Humans , Lung , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
13.
Radiol Med ; 126(6): 745-760, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33523367

ABSTRACT

PURPOSE: To assess the ability of radiomic features (RF) extracted from contrast-enhanced CT images (ceCT) and non-contrast-enhanced (non-ceCT) in discriminating histopathologic characteristics of pancreatic neuroendocrine tumors (panNET). METHODS: panNET contours were delineated on pre-surgical ceCT and non-ceCT. First- second- and higher-order RF (adjusted to eliminate redundancy) were extracted and correlated with histological panNET grade (G1 vs G2/G3), metastasis, lymph node invasion, microscopic vascular infiltration. Mann-Whitney with Bonferroni corrected p values assessed differences. Discriminative power of significant RF was calculated for each of the end-points. The performance of conventional-imaged-based-parameters was also compared to RF. RESULTS: Thirty-nine patients were included (mean age 55-years-old; 24 male). Mean diameters of the lesions were 24 × 27 mm. Sixty-nine RF were considered. Sphericity could discriminate high grade tumors (AUC = 0.79, p = 0.002). Tumor volume (AUC = 0.79, p = 0.003) and several non-ceCT and ceCT RF were able to identify microscopic vascular infiltration: voxel-alignment, neighborhood intensity-difference and intensity-size-zone families (AUC ≥ 0.75, p < 0.001); voxel-alignment, intensity-size-zone and co-occurrence families (AUC ≥ 0.78, p ≤ 0.002), respectively). Non-ceCT neighborhood-intensity-difference (AUC = 0.75, p = 0.009) and ceCT intensity-size-zone (AUC = 0.73, p = 0.014) identified lymph nodal invasion; several non-ceCT and ceCT voxel-alignment family features were discriminative for metastasis (p < 0.01, AUC = 0.80-0.85). Conventional CT 'necrosis' could discriminate for microscopic vascular invasion (AUC = 0.76, p = 0.004) and 'arterial vascular invasion' for microscopic metastasis (AUC = 0.86, p = 0.001). No conventional-imaged-based-parameter was significantly associated with grade and lymph node invasion. CONCLUSIONS: Radiomic features can discriminate histopathology of panNET, suggesting a role of radiomics as a non-invasive tool for tumor characterization. TRIAL REGISTRATION NUMBER: NCT03967951, 30/05/2019.


Subject(s)
Lymph Nodes/pathology , Neoplasm Staging/methods , Pancreatic Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Pancreatic Neoplasms/secondary , ROC Curve , Retrospective Studies , Tomography, X-Ray Computed/methods
14.
Int J Radiat Oncol Biol Phys ; 108(5): 1347-1356, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32758641

ABSTRACT

PURPOSE: Tumor control probability (TCP)-based early regression index (ERITCP) is a radiobiological parameter that showed promising results in predicting pathologic complete response (pCR) on T2-weighted 1.5 T magnetic resonance (MR) images of patients with locally advanced rectal cancer. This study aims to validate the ERITCP in the context of low-tesla MR-guided radiation therapy, using images acquired with different magnetic field strength (0.35 T) and image contrast (T2/T1). Furthermore, the optimal timing for pCR prediction was estimated, calculating the ERI index at different biologically effective dose (BED) levels. METHODS AND MATERIALS: Fifty-two patients with locally advanced rectal cancer treated with neoadjuvant chemoradiation therapy were enrolled in this multi-institutional retrospective study. For each patient, a 0.35 T T2/T1-weighted MR image was acquired during simulation and on each treatment day. Gross tumor volume was contoured according to International Commission on Radiation Units Report 83 guidelines. According to the original definition, ERITCP was calculated considering the residual tumor volume at BED = 25 Gy. ERI was also calculated in correspondence with several BED levels: 13, 21, 32, 40, 46, 54, 59, and 67. The predictive performance of the different ERI indices were evaluated in terms of receiver operating characteristic curve. The robustness of ERITCP with respect to the interobserver variability was also evaluated considering 2 operators and calculating the intraclass correlation index. RESULTS: Fourteen patients showed pCR. ERITCP correctly 47 of 52 cases (accuracy = 90%), showing good results in terms of sensitivity (86%), specificity (92%), negative predictive value (95%), and positive predictive value (80%). The analysis at different BED levels shows that the best predictive performance is obtained when this parameter is calculated at BED = 25 Gy (area under the curve = 0.93). ERITCP results are robust with respect to interobserver variability (intraclass correlation index = 0.99). CONCLUSIONS: This study confirmed the validity and the robustness of ERITCP as a pCR predictor in the context of low-tesla MR-guided radiation therapy and indicate 25 Gy as the best BED level to perform predictions.


Subject(s)
Chemoradiotherapy, Adjuvant/methods , Magnetic Resonance Imaging, Interventional , Radiotherapy, Image-Guided/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Algorithms , Area Under Curve , Female , Humans , Male , Middle Aged , Neoadjuvant Therapy/methods , Predictive Value of Tests , Probability , ROC Curve , Rectal Neoplasms/pathology , Relative Biological Effectiveness , Retrospective Studies , Sensitivity and Specificity , Treatment Outcome
15.
Phys Med ; 76: 125-133, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32673824

ABSTRACT

PURPOSE: To explore the variation of the discriminative power of CT radiomic features (RF) against image discretization/interpolation in characterizing pancreatic neuro-endocrine (PanNEN) neoplasms. MATERIALS AND METHODS: Thirty-nine PanNEN patients with pre-surgical high contrast CT available were considered. Image interpolation and discretization parameters were intentionally changed, including pixel size (0.73-2.19 mm2), slice thickness (2-5 mm) and binning (32-128 grey levels) and their combination generated 27 parameter's set. The ability of 69 RF in discriminating post-surgically assessed tumor grade (>G1), positive nodes, metastases and vascular invasion was tested: AUC changes when changing the parameters were quantified for selected RF, significantly associated to each end-point. The analysis was repeated for the corresponding images with contrast medium and in a sub-group of 29/39 patients scanned on a single scanner. RESULTS: The median tumor volume was 1.57 cm3 (16%-84% percentiles: 0.62-34.58 cm3). RF variability against discretization/interpolation parameters was large: only 21/69 RF showed %COV < 20%. Despite this variability, AUC changes were limited for all end-points: with typical AUC values around 0.75-0.85, AUC ranges for the 27 parameter's set were on average 0.062 (1SD:0.037) for all end-points with maximum %COV equal to 5.5% (mean:2.3%). Performances significantly improved when excluding the 5 mm thickness case and fixing the binning to 64 (mean AUC range: 0.036, 1SD:0.019). Using contrast images or limiting the population to single-scanner patients had limited impact on AUC variability. CONCLUSIONS: The discriminative power of CT RF for panNEN is relatively invariant against image interpolation/discretization within a large range of voxel sizes and binning.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Neuroendocrine Tumors/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Area Under Curve , Contrast Media , Humans , Neoplasm Grading , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/surgery , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/surgery , ROC Curve , Retrospective Studies , Tumor Burden
16.
Radiother Oncol ; 153: 258-264, 2020 12.
Article in English | MEDLINE | ID: mdl-32681930

ABSTRACT

PURPOSE: To assess the value of 18F-Fluorodeoxyglucose (18F-FDG) PET Radiomic Features (RF) in predicting Distant Relapse Free Survival (DRFS) in patients with Locally AdvancedPancreaticCancer (LAPC) treated with radio-chemotherapy. MATERIALS & METHODS: One-hundred-ninety-eight RFs were extracted using IBSI (Image Biomarker Standardization Initiative) consistent software from pre-radiotherapy images of 176 LAPC patients treated with moderate hypo-fractionation (44.25 Gy, 2.95 Gy/fr). Tumors were segmented by applying a previously validated semi-automatic method. One-hundred-twenty-six RFs were excluded due to poor reproducibility and/or repeatability and/or inter-scanner variability. The original cohort was randomly split into a training (n = 116) and a validation (n = 60) group. Multi-variable Cox regression was applied to the training group, including only independent RFs in the model. The resulting radiomic index was tested in the validation cohort. The impact of selected clinical variables was also investigated. RESULTS: The resulting Cox model included two first order RFs: Center of Mass Shift (COMshift) and 10th Intensity percentile (P10) (p = 0.0005, HR = 2.72, 95%CI = 1.54-4.80), showing worse outcomes for patients with lower COMshift and higher P10. Once stratified by quartile values (highest quartile vs the remaining), the index properly stratified patients according to their DRFS (p = 0.0024, log-rank test). Performances were confirmed in the validation cohort (p = 0.03, HR = 2.53, 95%CI = 0.96-6.65). The addition of clinical factors did not significantly improve the models' performance. CONCLUSIONS: A radiomic-based index including only two robust PET-RFs predicted DRFS of LAPC patients after radio-chemotherapy. The current results could find relevant applications in the treatment personalization of LAPC. A multi-institution independent validation has been planned.


Subject(s)
Neoplasm Recurrence, Local , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Positron-Emission Tomography , Reproducibility of Results , Retrospective Studies
17.
Radiother Oncol ; 149: 174-180, 2020 08.
Article in English | MEDLINE | ID: mdl-32417346

ABSTRACT

BACKGROUND AND PURPOSE: A previously introduced index based on early tumor (GTV) regression (ERITCP) during neo-adjuvant radio-chemotherapy of rectal cancer was used to investigate the impact of changes of oxaliplatin (OXA) delivery on the prediction of pathological complete response (pCR) and residual vital cell (RVC) fraction. MATERIALS AND METHODS: Ninety-five patients were treated following an adaptive protocol (41.4 Gy/18fr; 2.3 Gy/fr) delivering a simultaneous integrated boost to the residual GTV in the last 6 fractions (3 Gy/fr). OXA was delivered on days -14, 0 (start of RT) and +14. Based on the oncologist's preference, the last OXA cycle was not administered for 36 patients. MRIs taken at planning and at mid-RT were used to calculate ERITCP, before the timing of the third OXA cycle. The impact of OXA cycles and the discriminative power of ERITCP in predicting the pathological response (pCR, RVC >10%) were quantified. Multivariate logistic regression was performed to assess predictive models. RESULTS: Two patients with complete clinical remission refused surgery (cCR_ww). Complete post-surgical data of 54/59 and 35/36 patients were available for the two groups (3 vs 2 OXA cycles). pCR/pCR + cCR_ww/RVC >10% rates were 31.5/33.9/27.8% and 14.3/14.3/54.3% respectively (p = 0.01-0.07). ERITCP showed high negative predictive value (85-91%) for all end-points. The logistic predictive model for pCR included ERITCP (OR: 0.93) and OXA cycles (OR: 3.5), with AUC = 0.78. Internal validation through bootstrap confirmed the robustness of the results. CONCLUSIONS: Late omission of OXA dramatically reduced the pathological response. OXA delivery after the assessment of ERITCP significantly influenced the relationship between ERITCP and pCR.


Subject(s)
Rectal Neoplasms , Antineoplastic Combined Chemotherapy Protocols , Chemoradiotherapy , Humans , Neoadjuvant Therapy , Oxaliplatin , Rectal Neoplasms/drug therapy , Remission Induction , Treatment Outcome
18.
Strahlenther Onkol ; 196(3): 243-251, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31586231

ABSTRACT

PURPOSE: An increase of skin dose during head and neck cancer (HNC) radiotherapy is potentially dangerous. Aim of this study was to quantify skin dose variation and to assess the need of planning adaptation (ART) to counteract it. METHODS: Planning CTs of 32 patients treated with helical tomotherapy (HT) according to a Simultaneous Integrated Boost (SIB) technique delivering 54/66 Gy in 30 fractions were deformably co-registered to MVCTs taken at fractions 15 and 30; in addition, the first fraction was also considered. The delivered dose-of-the-day was calculated on the corresponding deformed images. Superficial body layers (SL) were considered as a surrogate for skin, considering a layer thickness of 2 mm. Variations of SL DVH (∆SL) during therapy were quantified, focusing on ∆SL95% (i.e., 62.7 Gy). RESULTS: Small changes (within ± 1 cc for ∆SL95%) were seen in 15/32 patients. Only 2 patients experienced ∆SL95% > 1 cc in at least one of the two monitored fractions. Negative ∆SL95% > 1 cc (up to 17 cc) were much more common (15/32 patients). The trend of skin dose changes was mostly detected at the first fraction. Negative changes were correlated with the presence of any overlap between PTV and SL at planning and were explained in terms of how the planning system optimizes the PTV dose coverage near the skin. Acute toxicity was associated with planning DVH and this association was not improved if considering DVHs referring to fractions 15/30. CONCLUSION: About half of the patients treated with SIB with HT for HNC experienced a skin-sparing effect during therapy; only 6% experienced an increase. Our findings do not support skin-sparing ART, while suggesting the introduction of improved skin-sparing planning techniques.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Skin/radiation effects , Head and Neck Neoplasms/diagnostic imaging , Humans , Radiotherapy Planning, Computer-Assisted/methods , Skin/diagnostic imaging , Skin/pathology , Tomography, X-Ray Computed
19.
Clin Transl Radiat Oncol ; 19: 12-16, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31334366

ABSTRACT

BACKGROUND AND PURPOSE: An early tumor regression index (ERITCP) was previously introduced and found to predict pathological response after neo-adjuvant radio-chemotherapy of rectal cancer. ERITCP was tested as a potential biomarker in predicting long-term disease-free survival. MATERIALS AND METHODS: Data of 65 patients treated with an early regression-guided adaptive boosting technique (ART) were available. Overall, loco-regional relapse-free and distant metastasis-free survival (OS, LRFS, DMFS) were considered. Patients received 41.4 Gy in 18 fractions (2.3 Gy/fr), including ART concomitant boost on the residual GTV during the last 6 fractions (3 Gy/fr, Dmean: 45.6 Gy). Chemotherapy included oxaliplatin and 5-fluorouracil (5-FU). T2-weighted MRI taken before (MRIpre) and at half therapy (MRIhalf) were available and GTVs were contoured (Vpre, Vhalf). The parameter ERITCP = -ln[(1 - (Vhalf/Vpre))Vpre] was calculated for all patients. Cox regression models were assessed considering several clinical and histological variables. Cox models not including/including ERITCP (CONV_model and REGR_model respectively) were assessed and their discriminative power compared. RESULTS: At a median follow-up of 47 months, OS, LRFS and DMFS were 94%, 95% and 78%. Due to too few events, multivariable analyses focused on DMFS: the resulting CONV_model included pathological complete remission or clinical complete remission followed by surgery refusal (HR: 0.15, p = 0.07) and 5-FU dose >90% (HR: 0.29, p = 0.03) as best predictors, with AUC = 0.75. REGR_model included ERITCP (HR: 1.019, p < 0.0001) and 5-FU dose >90% (HR: 0.18, p = 0.005); AUC was 0.86, significantly higher than CONV_model (p = 0.05). Stratifying patients according to the best cut-off value for ERITCP and to 5-FU dose (> vs <90%) resulted in 47-month DMFS equal to 100%/69%/0% for patients with two/one/zero positive factors respectively (p = 0.0002). ERITCP was also the only variable significantly associated to OS (p = 0.01) and LRFS (p = 0.03). CONCLUSION: ERITCP predicts long-term DMFS after radio-chemotherapy for rectal cancer: an independent impact of the 5-FU dose was also found. This result represents a first step toward application of ERITCP in treatment personalization: additional confirmation on independent cohorts is warranted.

20.
Phys Med ; 57: 41-46, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30738530

ABSTRACT

PURPOSE: The aim of this study was to quantify the impact of CT delineation uncertainty of pancreatic neuroendocrine neoplasms (panNEN) on Radiomic features (RF). METHODS: Thirty-one previously operated patients were considered. Three expert radiologists contoured panNEN lesions on pre-surgical high-resolution contrast-enhanced CT images and contours were transferred onto pre-contrast CT. Volume agreement was quantified by the DICE index. After images resampling and re-binning, 69 RF were extracted and the impact of inter-observer variability was assessed by Intra-Class Correlation (ICC): ICC > 0.80 was considered as a threshold for "very high" inter-observer agreement. RESULTS: The median volume was 1.3 cc (range: 0.2-110 cc); a satisfactory inter-observer volume agreement was found (mean DICE = 0.78). Only 4 RF showed ICC < 0.80 (0.48-0.73), including asphericity and three RFs (of five) of the neighborhood intensity difference matrix (NID). CONCLUSIONS: The impact of inter-observer variability in delineating panNEN on RF was minimum, with the exception of the NID family and asphericity, showing a moderate agreement. These results support the feasibility of studies aiming to assess CT radiomic biomarkers for panNEN.


Subject(s)
Carcinoma, Neuroendocrine/diagnostic imaging , Image Processing, Computer-Assisted , Pancreatic Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , Uncertainty , Humans , Reference Standards , Tomography, X-Ray Computed/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...