Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Ecol ; 43(2): 172-179, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28032268

ABSTRACT

Woodwasps in Sirex and related genera are well-represented in North American conifer forests, but the chemical ecology of native woodwasps is limited to a few studies demonstrating their attraction to volatile host tree compounds, primarily monoterpene hydrocarbons and monoterpene alcohols. Thus, we systematically investigated woodwasp-host chemical interactions in California's Sierra Nevada and West Virginia's Allegheny Mountains. We first tested common conifer monoterpene hydrocarbons and found that (-)-α-pinene, (+)-3-carene, and (-)-ß-pinene were the three most attractive compounds. Based on these results and those of earlier studies, we further tested three monoterpene hydrocarbons and four monoterpene alcohols along with ethanol in California: monoterpene hydrocarbons caught 72.3% of all woodwasps. Among monoterpene hydrocarbons, (+)-3-carene was the most attractive followed by (-)-ß-pinene and (-)-α-pinene. Among alcohols, ethanol was the most attractive, catching 41.4% of woodwasps trapped. Subsequent tests were done with fewer selected compounds, including ethanol, 3-carene, and ethanol plus (-)-α-pinene in both Sierra Nevada and Allegheny Mountains. In both locations, ethanol plus (-)-α-pinene caught more woodwasps than other treatments. We discussed the implications of these results for understanding the chemical ecology of native woodwasps and invasive Sirex noctilio in North America. In California, 749 woodwasps were caught, representing five species: Sirex areolatus Cresson, Sirex behrensii Cresson, Sirex cyaneus Fabricius, Sirex longicauda Middlekauff, and Urocerus californicus Norton. In West Virginia 411 woodwasps were caught representing four species: Sirex edwardsii Brullé, Tremex columba Linnaeus, Sirex nigricornis F., and Urocerus cressoni Norton.


Subject(s)
Ethanol , Insect Control/methods , Monoterpenes , Tracheophyta/parasitology , Wasps/physiology , Animals , Behavior, Animal/drug effects , Bicyclic Monoterpenes , California , Ethanol/analysis , Ethanol/pharmacology , Host-Parasite Interactions , Monoterpenes/analysis , Monoterpenes/pharmacology , Pheromones/analysis , Pheromones/metabolism , Pheromones/pharmacology , Tracheophyta/growth & development , Tracheophyta/metabolism , West Virginia
2.
Environ Entomol ; 43(4): 1019-26, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25003785

ABSTRACT

To develop safe and effective methods to protect whitebark pines, Pinus albicaulis Engelmann, and limber pines, Pinus flexilis James, from attack by mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), we compared verbenone and verbenone plus green leaf volatiles (GLVs) for prevention of beetle attack. We used two strategies: area-wide protection where semiochemical-releasing flakes are dispersed over the forest floor, and individual tree tests where flakes are applied to tree trunks. The area-wide bioassays were conducted by applying verbenone- and GLV-releasing flakes without stickers to the forest floor on 0.81-ha plots dominated by whitebark pines in the State of Washington with four replicates. We conducted individual tree bioassays by applying the same formulations with stickers to whitebark and limber pines in Montana and Colorado, respectively. In all three situations, both verbenone-alone and verbenone plus GLVs significantly increased the proportion of trees escaping mass attack by beetles, but the two formulations were not significantly different from one another. Despite a lack of significance at a Bonferroni-adjusted α = 0.05, adding GLVs gave slightly greater absolute levels of tree protection in most cases. Monitoring traps placed in the area-wide treatments in Washington showed similar outcomes for numbers of beetles trapped: both treatments had significantly fewer beetles than controls, and they were not significantly different from one another. At peak flight, however, plots with GLVs combined with verbenone had roughly 40% fewer beetles than plots with verbenone alone. GLVs are considerably cheaper than verbenone, so tests of higher application rates may be warranted to achieve enhanced tree protection at reasonable cost.


Subject(s)
Insect Control/methods , Pinus , Terpenes/pharmacology , Volatile Organic Compounds/pharmacology , Weevils/drug effects , Animals , Bicyclic Monoterpenes , Colorado , Montana , Pinus/growth & development , Plant Leaves , Washington , Weevils/physiology
3.
Environ Entomol ; 41(6): 1575-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23321106

ABSTRACT

In an attempt to improve semiochemical-based treatments for protecting forest stands from bark beetle attack, we compared push-pull versus push-only tactics for protecting lodgepole pine (Pinus contorta Douglas ex Loudon) and whitebark pine (Pinus albicaulis Engelm.) stands from attack by mountain pine beetle (Dendroctonus ponderosae Hopkins) in two studies. The first was conducted on replicated 4.04-ha plots in lodgepole pine stands (California, 2008) and the second on 0.81-ha plots in whitebark pine stands (Washington, 2010). In both studies, D. ponderosae population levels were moderate to severe. The treatments were 1) push-only (D. ponderosae antiaggregant semiochemicals alone); 2) push-pull (D. ponderosae antiaggregants plus perimeter traps placed at regular intervals, baited with four-component D. ponderosae aggregation pheromone); and 3) untreated controls. We installed monitoring traps baited with two-component D. ponderosae lures inside each plot to assess effect of treatments on beetle flight. In California, fewer beetles were collected in push-pull treated plots than in control plots, but push-only did not have a significant effect on trap catch. Both treatments significantly reduced the rate of mass and strip attacks by D. ponderosae, but the difference in attack rates between push-pull and push-only was not significant. In Washington, both push-pull and push-only treatments significantly reduced numbers of beetles caught in traps. Differences between attack rates in treated and control plots in Washington were not significant, but the push-only treatment reduced attack rates by 30% compared with both the control and push-pull treatment. We conclude that, at these spatial scales and beetle densities, push-only may be preferable for mitigating D. ponderosae attack because it is much less expensive, simpler, and adding trap-out does not appear to improve efficacy.


Subject(s)
Coleoptera/physiology , Herbivory , Insect Control/methods , Pinus , Animal Distribution , Animals , Bicyclic Monoterpenes , California , Pheromones/pharmacology , Population Density , Terpenes/pharmacology , Washington
4.
Pest Manag Sci ; 67(5): 548-55, 2011 May.
Article in English | MEDLINE | ID: mdl-21472972

ABSTRACT

BACKGROUND: The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is the most destructive bark beetle in western North America. Dendroctonus ponderosae can be prevented from successfully colonizing and killing individual trees by ground-based sprays of insecticides applied directly to the tree bole. However, the future availability of several active ingredients, including carbaryl which is most commonly used in the western United States, is uncertain. Two novel insecticides, cyantraniliprole [Cyazypyr(™)-OD (oil dispersion) and Cyazypyr(™)-SC (suspension concentrate)] and chlorantraniliprole (Rynaxypyr(®)), and carbaryl were assayed in both filter paper and topical assays. RESULTS: Compared with 20,000 mg L(-1) carbaryl (i.e. the maximum label rate for solutions applied to conifers for protection from bark beetle attack in the western United States), cyantraniliprole OD caused similar rates of mortality in D. ponderosae adults at 400-fold weaker concentrations in both bioassays, while cyantraniliprole SC caused similar rates of mortality at 40-fold weaker concentrations. Probit analyses confirmed that D. ponderosae is most sensitive to cyantraniliprole OD, while chlorantraniliprole was effective at concentrations similar to carbaryl. CONCLUSIONS: These results suggest that lower concentrations of carbaryl have merit for field testing than have been previously considered. While cyantraniliprole and chlorantraniliprole have similar modes of action, cyantraniliprole OD appears to have greater promise for protecting individual trees from mortality attributed to D. ponderosae attack and should be evaluated in field studies.


Subject(s)
Coleoptera/drug effects , Insect Control/instrumentation , Insecticides/pharmacology , Animals , Coleoptera/physiology , Pinus/parasitology , Plant Diseases/parasitology , Trees/parasitology
5.
New Phytol ; 187(3): 859-66, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20546136

ABSTRACT

*Recent studies have investigated the relationships between pairs or groups of exotic species to illustrate invasive mechanisms, but most have focused on interactions at a single trophic level. *Here, we conducted pathogenicity tests, analyses of host volatiles and fungal growth tests to elucidate an intricate network of interactions between the host tree, the invasive red turpentine beetle and its fungal associates. *Seedlings inoculated with two strains of Leptographium procerum isolated from Dendroctonus valens in China had significantly longer lesions and higher mortality rates than seedlings inoculated with other fungal isolates. These two strains of L. procerum were significantly more tolerant of 3-carene than all other fungi isolated there, and the infection of Chinese pine (Pinus tabuliformis) seedlings by these two strains enhanced the production and release of 3-carene, the main attractant for D. valens, by the seedlings. *Our results raise the possibility that interactions among the fungal associates of D. valens and their pine hosts in China may confer advantages to these strains of L. procerum and, by extension, to the beetles themselves. These interactions may therefore enhance invasion by the beetle-fungal complex.


Subject(s)
Coleoptera/microbiology , Fungi/physiology , Host-Pathogen Interactions , Insect Vectors/microbiology , Pinus/microbiology , Plant Bark/parasitology , Animals , Bicyclic Monoterpenes , Cyclohexane Monoterpenes , Fungi/growth & development , Monoterpenes/metabolism , Pinus/metabolism , Seedlings/metabolism , Seedlings/microbiology , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...