Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 78(6): 599-607, 2022 Jun 20.
Article in Japanese | MEDLINE | ID: mdl-35569959

ABSTRACT

We published a report entitled "Creation of a stereo-paired bone anatomical chart using human bone specimen for radiation education" in this journal in order to accurately understand the surface structure and three-dimensional structure of bones, and assist in bone image interpretation. However, some people cannot see stereoscopically with the naked eye. Therefore, we created anaglyph three-dimensional (3D) images from stereo-paired images of the stereo X-ray anatomical chart of the bone specimen. The anaglyph of the bone surface and X-ray images facilitates stereoscopic viewing with red-blue 3D glasses. The stereo X-ray anatomical chart of the bone specimen with anaglyph 3D images was converted into an electronic data file in the same manner as the stereo X-ray anatomical chart of the bone specimen, which can be easily used in any radiological examination rooms or at home through an electronic medium. We made it possible to perform correlative stereoscopic observations of the bone surface and X-ray images using red-blue 3D glasses.


Subject(s)
Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Radiography , X-Rays
2.
Article in Japanese | MEDLINE | ID: mdl-33883371

ABSTRACT

In a previous issue of this journal, we published a report entitled "Creation of Stereo-paired Bone Anatomical Charts Using Human Bone Specimens for Radiation Education" To understand how the bone specimen is visualized as an X-ray image, we newly created a bone specimen stereo-paired X-ray anatomical chart by adding the X-ray images of the same bone specimen. When a bone is X-rayed, the surface structure and internal structure of the bone are visualized as a composite image of the difference in X-ray absorption, and each bone becomes a unique X-ray image. Therefore, we took stereo-paired X-ray images of the bone specimens by the same method as the stereo-paired anatomical chart of the bone specimens. Then, we arranged the stereo-paired X-ray images and surface images of the same bone specimen in the one sheet to be readily compared. Similar to the previous bone specimen anatomical charts, these data of X-ray image anatomical chart were also made into an electronic file, so that we can do the three-dimensional observation of bone X-ray images even at the place of radiological examination or at home through electronic media. Until now, none of the specialized anatomy books and pictorial books are available for stereoscopic viewing of bone specimens and bone X-ray images. However, this stereo-paired X-ray image anatomical chart enabled us to learn accurate three-dimensionalization of bones by comparing the bone surface morphology and bone X-ray images.


Subject(s)
Comprehension , Learning , Humans , Imaging, Three-Dimensional , Radiography , X-Rays
3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 76(12): 1281-1286, 2020.
Article in Japanese | MEDLINE | ID: mdl-33342947

ABSTRACT

In radiological examinations of patients, we often take stacked images and three-dimensional (3D) images of human bone radiological images such as X-ray images and CT images. In general, learning of bone structure using specialized anatomy books is currently performed at medical radiological technologist education facilities. In the anatomy education of the medical school, in order to understand the structure of human and the individual bone shapes in detail, a real human bone specimen is used to gain knowledge of skeleton, bone shape, bone name and bone function. But it is actually difficult for a radiological technologist to obtain such learning opportunities. Therefore, we had to depend on two-dimensional information from an anatomical atlas so far. Therefore, as a method to solve this, we devised this stereo-paired bone anatomical chart by stereoscopic photography of a real human bone specimen that is available only in the anatomy laboratory. In classical anatomy textbooks, there are no figures that enable us to view 3D structures of human bones. Our stereo-paired bone anatomical charts make it possible to observe accurate bone structures three-dimensionally. In addition, we saved the data as a PDF file and uploaded to an internet server so that we can freely download and readily observe 3D images of human bones at all times and all places with a tablet or a PC monitor.


Subject(s)
Imaging, Three-Dimensional , Radiation , Comprehension , Humans , Learning , Models, Anatomic
4.
Article in Japanese | MEDLINE | ID: mdl-32307367

ABSTRACT

In anatomical charts in conventional books, the pathways of nerve fibers are drawn in illustrations. Conversely, with diffusion tensor tractography (DTT), we can visually understand the trajectory of nerve fibers through color. We created a stereo color anatomical chart of the nerve fibers that can be used for magnetic resonance (MR) examination to diagnose the pathway of nerve fibers and that can be used to explain the results of MR examination to visually understand how nerve fiber information is transmitted from the frontal lobe, parietal lobe, occipital lobe, temporal lobe, cerebellar lobe, and cerebral cortex.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging , Magnetic Resonance Spectroscopy , Nerve Fibers , Temporal Lobe
SELECTION OF CITATIONS
SEARCH DETAIL
...