Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15418, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723193

ABSTRACT

This study aims to enhance the CZTS device's overall efficiency, the key research area has been identified in this study is to explore the effects of a novel, low-cost, and simplified, deposition method to improve the optoelectronic properties of the buffer layer in the fabrication of CZTS thin film solar cells. Herein, an effective way of addressing this challenge is through adjusting the absorbers' structure by the concept of doping, sensitized CdS thin film by the bi-functional linker, and an environmentally friendly catalytic green agent. The Linker Assisted and Chemical Bath Deposition (LA-CBD) method was introduced as an innovative and effective hybrid sensitization approach. In the one-step synthesis process, Salvia dye, Ag, and 3-Mercaptopropionic acid (MPA) were used. Generally, the results for all samples displayed varying bandgap as achieved between (2.21-2.46) eV, hexagonal structure with considerably decreased strain level, broader grain size, and dramatically enhanced crystalline property. Hence, the rudimentary CdS/CZTS solar cell devices were fabricated for the application of these novel CdS films. Preliminary CZTS thin film solar cell fabrication results in the highest conversion efficiency of 0.266% obtained CdS + Salvia dye, indicating the potential use of the CdS films as a buffer layer for CZTS photovoltaic devices.

2.
RSC Adv ; 12(46): 29613-29626, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36321103

ABSTRACT

A high-quality buffer layer serves as one of the most significant issues that influences the efficiency of solar cells. Doping in semiconductors is an important strategy that can be used to control the reaction growth. In this study, the influence of Ag doping on the morphological, optical and electrical properties of CdS thin films have been obtained. Herein, we propose the mechanism of CdS film formation with and without Ag ions, and we found that changes in the reaction of preparing CdS by the chemical bath deposition (CBD) method cause a shift in the geometric composition of the CdS film. XRD showed that the position of peaks in the doped films are displaced to wider angles, indicating a drop in the crystal lattice constant. The optical analysis confirmed direct transition with an optical energy gap between 2.10 and 2.43 eV. The morphological studies show conglomerates with inhomogeneously distributed spherical grains with an increase of the Ag ratio. The electrical data revealed that the annealed Ag-doped CdS with 5% Ag has the highest carrier concentration (3.28 × 1015 cm-3) and the lowest resistivity (45.2 Ω cm). According to the results, the optimal Ag ratio was obtained at Ag 5%, which encourages the usage of CdS in this ratio as an efficient buffer layer on photovoltaic devices.

4.
Sci Rep ; 12(1): 8099, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35577846

ABSTRACT

Quantum bandgap buffer layers can improve sunlight absorption in the short wavelength region, hence improving the performance of CIGS solar cells. In this study, we use numerical modelling to determine the impact of various buffer layers' electrical characteristics on the performance of CIGS thin film photovoltaic devices, particularly, carrier concentration and the quantum effect. As well Ag2S buffer layer has been experimentally examined to fulfilment its effect in term of bulk and quantum bandgap. Experimental results depicted that, Ag2S QDs has polycrystalline nature of films, with smooth surface roughness, and average diameter 4 nm. Meanwhile, a simulation revealed that the Fermi level of the (n-buffer layer) material shifts closer to the conduction band with an increase in carrier concentration. The findings indicate that, a buffer layer with a wider bandgap and carrier concentration is an essential demand for achieving a device with a higher conversion efficiency and a broader bandgap-CBO window. It was attributed to beneficial synergistic effects of high carrier concentration and narrower depletion region, which enable carriers to overcome high CBO barrier. Most importantly, modelling results indicate that the optic-electrical characteristics of the buffer layer are critical in determining the progress of a CIGS solar cell.

5.
Sci Rep ; 11(1): 22635, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34811402

ABSTRACT

MHD nanoliquid convective flow in an odd-shaped cavity filled with a multi-walled carbon nanotube-iron (II, III) oxide (MWCNT-Fe3O4) hybrid nanofluid is reported. The side walls are adiabatic, and the internal and external borders of the cavity are isothermally kept at high and low temperatures of Th and Tc, respectively. The governing equations obtained with the Boussinesq approximation are solved using Galerkin Finite Element Method (GFEM). Impact of Darcy number (Da), Hartmann number (Ha), Rayleigh number (Ra), solid volume fraction (ϕ), and Heated-wall length effect are presented. Outputs are illustrated in forms of streamlines, isotherms, and Nusselt number. The impact of multiple parameters namely Rayleigh number, Darcy number, on entropy generation rate was analyzed and discussed in post-processing under laminar and turbulent flow regimes.

SELECTION OF CITATIONS
SEARCH DETAIL
...