Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 77(17): 6208-14, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21742922

ABSTRACT

The standard test methods used to assess the efficiency of a disinfectant applied to surfaces are often based on counting the microbial survivors sampled in a liquid, but total cell removal from surfaces is seldom achieved. One might therefore wonder whether evaluations of microbial survivors in liquid-sampled cells are representative of the levels of survivors in whole populations. The present study was thus designed to determine the "damaged/undamaged" status induced by a peracetic acid disinfection for Bacillus atrophaeus spores deposited on glass coupons directly on this substrate and to compare it to the status of spores collected in liquid by a sampling procedure. The method utilized to assess the viability of both surface-associated and liquid-sampled spores included fluorescence labeling with a combination of Syto 61 and Chemchrome V6 dyes and quantifications by analyzing the images acquired by confocal laser scanning microscopy. The principal result of the study was that the viability of spores sampled in the liquid was found to be poorer than that of surface-associated spores. For example, after 2 min of peracetic acid disinfection, less than 17% ± 5% of viable cells were detected among liquid-sampled cells compared to 79% ± 5% or 47% ± 4%, respectively, when the viability was evaluated on the surface after or without the sampling procedure. Moreover, assessments of the survivors collected in the liquid phase, evaluated using the microscopic method and standard plate counts, were well correlated. Evaluations based on the determination of survivors among the liquid-sampled cells can thus overestimate the efficiency of surface disinfection procedures.


Subject(s)
Bacillus/drug effects , Disinfectants/pharmacology , Disinfection/methods , Environmental Microbiology , Microbial Viability/drug effects , Spores/drug effects , Bacterial Load/methods , Fluorescent Dyes/metabolism , Glass , Peracetic Acid/pharmacology , Staining and Labeling/methods
2.
J Appl Microbiol ; 109(5): 1706-14, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20618887

ABSTRACT

AIMS: To evaluate the impact of the mode of contamination in relation with the nature of solid substrates on the resistance of spores of Bacillus atrophaeus -selected as surrogates of Bacillus anthracis- to a disinfectant, peracetic acid. METHODS AND RESULTS: Six materials confronted in urban and military environments were selected for their different structural and physicochemical properties. In parallel, two modes of contamination were examined, i.e. deposition and immersion. Deposition was used to simulate contamination by an aerosol and immersion by an extended contact with liquids. A pronounced difference in the biocontamination levels and spatial organization of spores was observed depending on the mode of contamination and the nature of the solid substrate considered, with consequences on decontamination. Contamination by immersion led to lower efficiency of peracetic acid decontamination than contamination by deposition. Infiltration of spores into porous materials after immersion is one reason. In contrast, the deposition mode aggregates cells at the surface of materials, explaining the similar disinfecting behaviour of porous and nonporous substrates when considering this inoculation route. CONCLUSIONS: The inoculation route was shown to be as influential a parameter as material characteristics (porosity and wettability) for decontamination efficacy. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide comparative information for the decontamination of B. atrophaeus spores in function of the mode of contamination and the nature of solid substrates.


Subject(s)
Bacillus anthracis/physiology , Disinfectants/pharmacology , Disinfection , Drug Resistance, Bacterial/physiology , Equipment Contamination , Peracetic Acid/pharmacology , Disinfection/methods , Manufactured Materials/microbiology , Spores, Bacterial/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...