Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124243, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38613898

ABSTRACT

The increasing demand for pollen-free seedlings of Japanese cedar (Cryptomeria japonica) has created a need for a simple method to discriminate between male-sterile and male-fertile strobili. The objective of this study was to establish a classification model to quickly and easily distinguish male-sterile and male-fertile strobili in C. japonica using near-infrared (NIR) diffuse transmission spectroscopy. The absorbance spectra of C. japonica were obtained for three different months from December 2022 to February 2023 and preprocessed using three methods: untreated, smoothing, and second derivative. Principal component analysis was applied to the NIR spectra and classification models were built using a support vector machine. The sample collected in January 2023 showed the highest discrimination accuracy of 89.38% with the smoothing preprocessing, which was improved to 89.97% by limiting the wavelengths to the NIR region. Furthermore, discrimination accuracy for independent test data was evaluated by splitting the data into training and testing sets using January 2023 data with smoothing preprocessing. The discrimination accuracy for test data sets was more than 85%, and the misclassification ratio was less than 20% for each sample group. These results indicate the potential of using NIR diffuse transmission spectroscopy to discriminate between male-sterility and fertility in C. japonica.


Subject(s)
Cryptomeria , Principal Component Analysis , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Support Vector Machine , Fertility/physiology , Plant Infertility
2.
Tree Physiol ; 44(2)2024 02 11.
Article in English | MEDLINE | ID: mdl-38145493

ABSTRACT

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease system is a versatile and essential biotechnological tool in the life sciences that allows efficient genome editing. When generating gene-edited trees, T0-generation plants are often used for subsequent analysis because of the time that is required to obtain the desired mutants via crossing. However, T0-generation plants exhibit various unexpected mutations, which emphasizes the need to identify mutants with expected mutation patterns. The two critical checkpoints in this process are to confirm the expected mutation patterns in both alleles and to exclude somatic chimeric plants. In this study, we generated gene-edited Cryptomeria japonica plants and established a method to determine chimerism and mutation patterns using fragment analysis and Oxford Nanopore Technologies (ONT)-based amplicon sequencing. In the first screening, fragment analysis, i.e., indel detection via amplicon analysis, was used to predict indel mutation patterns in both alleles and to discriminate somatic chimeric plants in 188 candidate mutants. In the second screening, we precisely determined the mutation patterns and chimerism in the mutants using ONT-based amplicon sequencing, where confirmation of both alleles can be achieved using allele-specific markers flanking the single guide RNA target site. In the present study, a bioinformatic analysis procedure was developed and provided for the rapid and accurate determination of DNA mutation patterns using ONT-based amplicon sequencing. As ONT amplicon sequencing has a low running cost compared with other long-read analysis methods, such as PacBio, it is a powerful tool in plant genetics and biotechnology to select gene-edited plants with expected indel patterns in the T0-generation.


Subject(s)
Gene Editing , Nanopores , Gene Editing/methods , CRISPR-Cas Systems , Trees/genetics , RNA, Guide, CRISPR-Cas Systems , Plants
3.
PNAS Nexus ; 2(8): pgad236, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37559748

ABSTRACT

Pollinosis, also known as pollen allergy or hay fever, is a global problem caused by pollen produced by various plant species. The wind-pollinated Japanese cedar (Cryptomeria japonica) is the largest contributor to severe pollinosis in Japan, where increasing proportions of people have been affected in recent decades. The MALE STERILITY 4 (MS4) locus of Japanese cedar controls pollen production, and its homozygous mutants (ms4/ms4) show abnormal pollen development after the tetrad stage and produce no mature pollen. In this study, we narrowed down the MS4 locus by fine mapping in Japanese cedar and found TETRAKETIDE α-PYRONE REDUCTASE 1 (TKPR1) gene in this region. Transformation experiments using Arabidopsis thaliana showed that single-nucleotide substitution ("T" to "C" at 244-nt position) of CjTKPR1 determines pollen production. Broad conservation of TKPR1 beyond plant division could lead to the creation of pollen-free plants not only for Japanese cedar but also for broader plant species.

4.
Phytochemistry ; 207: 113559, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36528119

ABSTRACT

Most ornithophilous plants have red flowers; this has been associated with 'the bee avoidance hypothesis', in which ornithophilous flowers may bear colors that are less conspicuous to bees than melittophilous flowers. In the genus Camellia, C. rusticana and C. japonica bear red flowers and yet recruit different pollinators; the former is entomophilous, while the latter is ornithophilous. C. japonica is considered to have been speciated from a common ancestor later than C. rusticana, accompanying a pollinator shift from insects to birds. Nevertheless, factors explaining the pollinator difference in camellias remain rudimentary. In this study, the color traits of the two camellias were investigated, to determine their color strategy to allure different pollinators. The behavior of bees towards the two camellias was examined by a two-choice assay. Flower color characteristics of the two camellias were analyzed with diffuse reflectance and fluorescence spectra. Based on the visual sensory system of bees and birds, the achromatic contrast, chromatic contrast, intensity, and spectral purity of the two species were evaluated, testing the bee avoidance hypothesis. Furthermore, the compounds responsible for the fluorescence, likely serving as a visual attractant, were identified by NMR and MS. Bees visited C. rusticana flowers almost exclusively and C. japonica hardly at all. Reflectance spectral data showed that C. rusticana petals are more conspicuous to bees than birds due to a UV-reflection secondary peak; and that C. japonica petals exhibited crucially low chromatic contrast against a leaf background to bees, suggesting them to be almost indistinguishable. On the other hand, C. japonica flowers appeared conspicuous to birds. The anthers of C. rusticana exhibited blue fluorescence derived from two anthranilates, while those of C. japonica did not. The two camellias offer different color strategies to be conspicuous to their respective pollinators, and C. japonica seemed to have evolved to avoid bees. Alterations in these color traits may have played a role in pollinator shift.


Subject(s)
Color , Pollination , Animals , Bees , Birds , Flowers
5.
PLoS One ; 17(7): e0270522, 2022.
Article in English | MEDLINE | ID: mdl-35793335

ABSTRACT

The heartwood color of a major plantation tree Cryptomeria japonica shows high variability among clones and cultivars, and brighter heartwood has higher value in the usage of non-laminated wood such as in traditional construction, which makes heartwood color an important trait in breeding of this species. However, the genetic basis of the interactions between genetics and the environment on heartwood color has been understudied while these are necessary for effective breeding programs in multiple environmental condition. The objectives of the present study were to evaluate the effects of genetics and environments on heartwood color and how they interact in contrasting environments, and to identify genomic regions controlling heartwood color in C. japonica across multiple environments. Heartwood color in terms of L*a*b* color space and spectral reflectance was measured in common gardens established in three contrasting sites. Quantitative trait loci (QTL) that affect heartwood color were identified using previously constructed highly saturated linkage maps. Results found that heartwood color was largely genetically controlled, and genotype-by-environment interaction explained one-third of the total genetic variance of heartwood color. The effect of the environment was small compared to the effect of genetics, whereas environmental effects largely varied among heartwood color traits. QTL analysis identified a large number of QTLs with small to moderate effects (phenotypic variation explained of 6.6% on average). Some of these QTLs were stably expressed in multiple environments or had pleiotropic effects on heartwood color and moisture content. These results indicated that genetic variation in phenotypic plasticity plays an important role in regulating heartwood color and that the identified QTLs would maximize the breeding efficiency of heartwood color in C. japonica in heterogeneous environments.


Subject(s)
Cryptomeria , Quantitative Trait Loci , Cryptomeria/genetics , Gene-Environment Interaction , Genotype , Plant Breeding
6.
Front Plant Sci ; 13: 825340, 2022.
Article in English | MEDLINE | ID: mdl-35211140

ABSTRACT

Sugi (Japanese cedar, Cryptomeria japonica) is the most important forestry tree species in Japan, covering 44% of the total artificial forest area. Large amounts of pollen released from these forests each spring cause allergic reactions in approximately 40% of the population, which are a serious social and public health problem in Japan. As a countermeasure, there is an urgent need to reforest using male-sterile plants (MSPs; pollen-free plants); however, the production of MSPs via conventional methods is inefficient, time consuming, and requires considerable resources in terms of labor and space. In the present paper, we described an improved and simplified methodology for the efficient propagation of pollen-free Japanese cedar, combining the use of genetic markers (marker-assisted selection or marker-aided selection) for the early selection of male-sterile genotypes and the use of somatic embryogenesis (SE) for the clonal mass propagation of seedlings. We describe all the stages involved in the production process of somatic seedlings. Our results demonstrated that this methodology easily and efficiently produces MSPs with a discrimination rate of 100% in a short period of time. Production of 243.6 ± 163.6 cotyledonary embryos per plate, somatic embryo germination, and plantlet conversion frequencies of 87.1 ± 11.9% and 84.8 ± 12.6%, respectively, and a 77.6 ± 12.1% survival rate after ex vitro acclimatization was achieved. Moreover, we also describe an easy method for the collection of somatic embryos prior to germination, as well as an efficient and practical method for their storage at 5°C. Finally, a representative schedule for the propagation of pollen-free sugi somatic seedlings is presented as a reference for practical uses. This methodology will definitively help to accelerate the production of C. japonica MSPs across Japan.

7.
Front Plant Sci ; 12: 748110, 2021.
Article in English | MEDLINE | ID: mdl-34712261

ABSTRACT

Pollen allergy caused by sugi (Japanese cedar, Cryptomeria japonica) is a serious problem in Japan. One of the measures against pollinosis is the use of male-sterile plants (MSPs; pollen-free plants). In this context, the development of a novel technique for the efficient production of sugi MSPs, which combines marker-assisted selection (MAS) with somatic embryogenesis (SE), was recently reported by our research group. To improve the efficiency of MSP production, in this paper we report improved MAS for male-sterile individuals from embryogenic cells, cotyledonary embryos, and somatic plants of sugi using a newly developed marker in the form of the causative mutation of MS1 itself, selecting individuals with ms1-1 and ms1-2 male-sterile mutations. We also describe simplified methods for extracting DNA from different plant materials and for MAS using LAMP diagnostics. Finally, we show that MAS can be efficiently performed using the one-step indel genotyping (ING) marker developed in this study and using InstaGene for DNA extraction. The combination of SE and 100% accurate marker selection during the embryogenic cell stage enables the mass production of MS1 male-sterile sugi seedlings.

8.
Plants (Basel) ; 10(5)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926083

ABSTRACT

This paper presents the results of several experiments identifying basal salts (BS) contained in maturation medium, polyethylene glycol (PEG) concentration, abscisic acid (ABA) concentration, additional supplementation with potassium chloride (KCl), amino acid (AA) concentration, and proliferation culture medium (PCM) as the main culture factors affecting somatic embryo maturation in sugi (Japanese cedar, Cryptomeria japonica, Cupressaceae). Highly efficient embryo maturation was achieved when embryogenic cell lines (ECLs) were cultured on media supplemented with a combination of PEG, ABA, and AAs. More than 1000 embryos per gram of fresh weight (FW) can be produced on EM maturation medium supplemented with 175 g L-1 PEG, 100 µM ABA, 2 g L-1 glutamine, 1 g L-1 asparagine, and 0.5 g L-1 arginine.

9.
Plants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922663

ABSTRACT

Japanese cedar (Cryptomeria japonica) is the most important timber species in Japan; however, its pollen is the primary cause of pollinosis in Japan. The total number of pollen grains produced by a single tree is determined by the number of male strobili (male flowers) and the number of pollen grains per male strobilus. While the number of male strobili is a visible and well-investigated trait, little is known about the number of pollen grains per male strobilus. We hypothesized that genetic and environmental factors affect the pollen number per male strobilus and explored the factors that affect pollen production and genetic variation among clones. We counted pollen numbers of 523 male strobili from 26 clones using a cell counter method that we recently developed. Piecewise Structural Equation Modeling (pSEM) revealed that the pollen number is mostly affected by genetic variation, male strobilus weight, and pollen size. Although we collected samples from locations with different environmental conditions, statistical modeling succeeded in predicting pollen numbers for different clones sampled from branches facing different directions. Comparison of predicted pollen numbers revealed that they varied >3-fold among the 26 clones. The determination of the factors affecting pollen number and a precise evaluation of genetic variation will contribute to breeding strategies to counter pollinosis. Furthermore, the combination of our efficient counting method and statistical modeling will provide a powerful tool not only for Japanese cedar but also for other plant species.

10.
Plants (Basel) ; 10(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669646

ABSTRACT

This study aimed to obtain information from several embryogenic cell (EC) genotypes analyzing the factors that affect somatic embryogenesis (SE) initiation in sugi (Cryptomeria japonica, Cupressaceae) to apply them in the improvement of protocols for efficient induction of embryogenic cell lines (ECLs). The results of several years of experiments including studies on the influence of initial explant, seed collection time, and explant genotype as the main factors affecting SE initiation from male-fertile, male-sterile, and polycross-pollinated-derived seeds are described. Initiation frequencies depending on the plant genotype varied from 1.35 to 57.06%. The best induction efficiency was achieved when seeds were collected on mid-July using the entire megagametophyte as initial explants. The extrusion of ECs started approximately after 2 weeks of culture, and the establishment of ECLs was observed mostly 4 weeks after extrusion on media with or without plant growth regulators (PGRs). Subsequently, induced ECLs were maintained and proliferated on media with PGRs by 2-3-week-interval subculture routines. Although, the initial explant, collection time, and culture condition played important roles in ECL induction, the genotype of the plant material of sugi was the most influential factor in SE initiation.

11.
PLoS One ; 16(2): e0247180, 2021.
Article in English | MEDLINE | ID: mdl-33630910

ABSTRACT

Sugi (Cryptomeria japonica D. Don) is an important conifer used for afforestation in Japan. As the genome of this species is 11 Gbps, it is too large to assemble within a short timeframe. Transcriptomics is one approach that can address this deficiency. Here we designed a workflow consisting of three stages to de novo assemble transcriptome using Oases and Trinity. The three transcriptomic stage used were independent assembly, automatic and semi-manual integration, and refinement by filtering out potential contamination. We identified a set of 49,795 cDNA and an equal number of translated proteins. According to the benchmark set by BUSCO, 87.01% of cDNAs identified were complete genes, and 78.47% were complete and single-copy genes. Compared to other full-length cDNA resources collected by Sanger and PacBio sequencers, the extent of the coverage in our dataset was the highest, indicating that these data can be safely used for further studies. When two tissue-specific libraries were compared, there were significant expression differences between male strobili and leaf and bark sets. Moreover, subtle expression difference between male-fertile and sterile libraries were detected. Orthologous genes from other model plants and conifer species were identified. We demonstrated that our transcriptome assembly output (CJ3006NRE) can serve as a reference transcriptome for future functional genomics and evolutionary biology studies.


Subject(s)
Cryptomeria/genetics , Transcriptome/genetics , DNA, Complementary/genetics , Genes, Plant/genetics , Sequence Analysis, DNA
12.
Sci Rep ; 11(1): 1496, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452328

ABSTRACT

Identifying causative genes for a target trait in conifer reproduction is challenging for species lacking whole-genome sequences. In this study, we searched for the male-sterility gene (MS1) in Cryptomeria japonica, aiming to promote marker-assisted selection (MAS) of male-sterile C. japonica to reduce the pollinosis caused by pollen dispersal from artificial C. japonica forests in Japan. We searched for mRNA sequences expressed in male strobili and found the gene CJt020762, coding for a lipid transfer protein containing a 4-bp deletion specific to male-sterile individuals. We also found a 30-bp deletion by sequencing the entire gene of another individual with the ms1. All nine breeding materials with the allele ms1 had either a 4-bp or 30-bp deletion in gene CJt020762, both of which are expected to result in faulty gene transcription and function. Furthermore, the 30-bp deletion was detected from three of five individuals in the Ishinomaki natural forest. From our findings, CJt020762 was considered to be the causative gene of MS1. Thus, by performing MAS using two deletion mutations as a DNA marker, it will be possible to find novel breeding materials of C. japonica with the allele ms1 adapted to the unique environment of each region of the Japanese archipelago.


Subject(s)
Cryptomeria/genetics , Plant Infertility/genetics , Allergens/genetics , Antigens, Plant/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Conservation of Natural Resources/methods , Cryptomeria/metabolism , Expressed Sequence Tags , Forestry/methods , Genetic Testing/methods , Genetic Variation/genetics , Japan , Phenotype , Plant Breeding/methods , Plant Infertility/physiology , Pollen/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
13.
PLoS One ; 15(12): e0244634, 2020.
Article in English | MEDLINE | ID: mdl-33373415

ABSTRACT

Somatic embryogenesis (SE), which is in vitro regeneration of plant bodies from somatic cells, represents a useful means of clonal propagation and genetic engineering of forest trees. While protocols to obtain calluses and induce regeneration in somatic embryos have been reported for many tree species, the knowledge of molecular mechanisms of SE development is still insufficient to achieve an efficient supply of somatic embryos required for the industrial application. Cryptomeria japonica, a conifer species widely used for plantation forestry in Japan, is one of the tree species waiting for a secure SE protocol; the probability of normal embryo development appears to depend on genotype. To discriminate the embryogenic potential of embryonal masses (EMs) and efficiently obtain normal somatic embryos of C. japonica, we investigated the effects of genotype and transcriptome on the variation in embryogenic potential. Using an induction experiment with 12 EMs each from six genotypes, we showed that embryogenic potential differs between/within genotypes. Comparisons of gene expression profiles among EMs with different embryogenic potentials revealed that 742 differently expressed genes were mainly associated with pattern forming and metabolism. Thus, we suggest that not only genotype but also gene expression profiles can determine success in SE development. Consistent with previous findings for other conifer species, genes encoding leafy cotyledon, wuschel, germin-like proteins, and glutathione-S-transferases are likely to be involved in SE development in C. japonica and indeed highly expressed in EMs with high-embryogenic potential; therefore, these proteins represent candidate markers for distinguishing embryogenic potential.


Subject(s)
Cryptomeria/growth & development , Gene Expression Profiling/methods , Gene Regulatory Networks , Plant Somatic Embryogenesis Techniques/methods , Cryptomeria/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genetic Variation , Genotype , Japan , Plant Proteins , Sequence Analysis, RNA
14.
Plant Methods ; 16: 124, 2020.
Article in English | MEDLINE | ID: mdl-32944062

ABSTRACT

BACKGROUND: The determination of pollen number is important in evolutionary, agricultural, and medical studies. Tree species of the Cupressaceae family cause serious pollinosis worldwide. Although Japanese cedar (Cryptomeria japonica) is the most important forestry species in Japan, it is also the biggest cause of pollinosis in the country. Japanese cedar trees have been selected for growth speed and superior morphological traits and then cloned. These clones may vary in their pollen production, but there has been little research on how many pollen grains are produced by a single male strobilus (flower). A recently reported method for counting pollen number with a cell counter was applicable to Arabidopsis species and wheat, but was not suitable for Japanese cedar because the strobilus does not open with heating (e.g. 60 °C, overnight). RESULTS: Here, we report an improved pollen counting method for Japanese cedar using a precise and rapid cell counter in combination with home-made mesh columns. The male strobilus was gently crushed using a pestle. Large and small debris were then removed using 100- and 20-µm mesh columns, respectively. We successfully detected pollen sizes and numbers that differed between two clones using this method. CONCLUSIONS: This improved method is not only suitable for counting pollen from Japanese cedar, but could also be applied to other species of the Cupressaceae family with hard scale tissue covering the pollen. Moreover, this method could be applied to a broader range of plant species, such as wheat, because there is no need to wait for anthesis and debris can be removed efficiently.

15.
BMC Res Notes ; 13(1): 457, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32993771

ABSTRACT

OBJECTIVE: Due to the allergic nature of the pollen of Cryptomeria japonica, the most important Japanese forestry conifer, a pollen-free cultivar is preferred. Mutant trees detected in nature have been used to produce a pollen-free cultivar. In order to reduce the time and cost needed for production and breeding, we aimed to develop simple diagnostic molecular markers for mutant alleles of the causative gene MALE STERILITY 1 (MS1) in C. japonica to rapidly identify pollen-free mutants. RESULTS: We developed PCR and LAMP markers to detect mutant alleles and to present experimental options depending on available laboratory equipment. LAMP markers were developed for field stations, where PCR machines are unavailable. The LAMP method only needs heat-blocks or a water bath to perform the isothermal amplification and assay results can be read by the naked eye. Because the causative mutations were deletions, we developed two kinds of PCR markers, amplified length polymorphism (ALP) and allele specific PCR (ASP) markers. These assays can be visualized using capillary or agarose gel electrophoresis.


Subject(s)
Cryptomeria , Plant Infertility , Pollen , Cryptomeria/genetics , Plant Breeding , Pollen/genetics , Polymerase Chain Reaction
16.
Plants (Basel) ; 9(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823795

ABSTRACT

One of the possible countermeasures for pollinosis caused by sugi (Cryptomeria japonica), a serious public health problem in Japan, is the use of male sterile plants (MSPs; pollen-free plants). However, the production efficiencies of MSPs raised by conventional methods are extremely poor, time consuming, and resulting in a high seedling cost. Here, we report the development of a novel technique for efficient production of MSPs, which combines marker-assisted selection (MAS) and somatic embryogenesis (SE). SE from four full sib seed families of sugi, carrying the male sterility gene MS1, was initiated using megagametophyte explants that originated from four seed collections taken at one-week intervals during the month of July 2017. Embryogenic cell lines (ECLs) were achieved in all families, with initiation rates varying from 0.6% to 59%. Somatic embryos were produced from genetic marker-selected male sterile ECLs on medium containing maltose, abscisic acid (ABA), polyethylene glycol (PEG), and activated charcoal (AC). Subsequently, high frequencies of germination and plant conversion (≥76%) were obtained on plant growth regulator-free medium. Regenerated plantlets were acclimatized successfully, and the initial growth of male sterile somatic plants was monitored in the field.

17.
Breed Sci ; 69(1): 19-29, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31086480

ABSTRACT

Cryptomeria japonica is a major forestry tree species in Japan. Male sterility of the species is caused by a recessive gene, which shows dysfunction of pollen development and results in no dispersed pollen. Because the pollen of C. japonica induces pollinosis, breeding of pollen-free C. japonica is desired. In this study, single nucleotide polymorphism (SNP) markers located at 1.78 and 0.58 cM to a male sterility locus (MS1) were identified from an analysis of RNA-Seq and RAD-Seq, respectively. SNPs closely linked to MS1 were first scanned by a method similar to MutMap, where a type of index was calculated to measure the strength of the linkage between a marker sequence and MS1. Linkage analysis of selected SNP markers confirmed a higher efficiency of the current method to construct a partial map around MS1. Allele-specific PCR primer pair for the most closely linked SNP with MS1 was developed as a codominant marker, and visualization of the PCR products on an agarose gel enabled rapid screening of male sterile C. japonica. The allele-specific primers developed in this study would be useful for establishing the selection of male sterile C. japonica.

18.
PLoS One ; 13(11): e0206695, 2018.
Article in English | MEDLINE | ID: mdl-30439978

ABSTRACT

Pollinosis caused by Japanese cedar (Cryptomeria japonica) is a widespread social problem in Japan. To date, 23 male-sterile C. japonica trees have been selected in Japan to address pollinosis, from which four male-sterility loci (MS1, MS2, MS3, and MS4) have been identified from test crossing results. For efficient breeding of male-sterile C. japonica trees, more male-sterile individuals and individuals heterozygous for male-sterile genes are required. Therefore, we aimed to develop DNA markers for marker-assisted selection of four types of male-sterile genes from populations without a family structure. First, for four families exhibiting segregation of each male-sterile locus (MS1, MS2, MS3, and MS4), genome-wide single-nucleotide polymorphism and insertion/deletion (indel) genotyping was performed using the Axiom myDesign Targeted Genotyping Array method. Four high-density linkage maps for mapping the MS1, MS2, MS3, and MS4 families were constructed, which included 4923, 1722, 1896, and 2247 markers, respectively. In these maps, 15, 4, 2, and 2 markers were located 0.0, 3.3, 1.1, and 0.0 cM from the MS1, MS2, MS3, and MS4 loci, respectively. Second, for the markers located 0.0 cM from a male-sterile locus (i.e., MS1 and MS4), to clarify the most tightly linked markers, we calculated the prediction rate of male-sterile gene genotypes from marker genotypes for 78 trees. The markers with the highest prediction rates were AX-174127446 (0.95) for MS1 and AX-174121522 (1.00) for MS4. The AX-174121522 marker was considered to be suitable for selecting trees homozygous or heterozygous for the MS4 gene from plus-trees without a pollination test, which requires a large amount of time and effort. The nearest markers to the male-sterile loci found in this study may facilitate the isolation of male-sterile genes in C. japonica via combination with the draft genomic sequence that is currently being collated.


Subject(s)
Cryptomeria/genetics , Genes, Plant , Genetic Markers , Plant Breeding , Plant Infertility/genetics , Polymorphism, Single Nucleotide , Chromosome Mapping , Genetic Linkage , Genetic Loci , Genome, Plant , Genotyping Techniques
19.
Genome Biol Evol ; 7(10): 2799-2809, 2015 10.
Article in English | MEDLINE | ID: mdl-26400405

ABSTRACT

While recent advances have been gained on genome evolution in angiosperm lineages, virtually nothing is known about karyotype evolution in the other group of seed plants, the gymnosperms. Here we used high density gene-based linkage mapping to compare the karyotype structure of two families of conifers (the most abundant group of gymnosperms) separated around 290 million years ago: Pinaceae and Cupressaceae. We propose for the first time a model based on the fusion of 20 ancestral chromosomal blocks that may have shaped the modern karyotpes of Pinaceae (with n=12) and Cupressaceae (with n=11). The considerable difference in modern genome organization between these two lineages contrasts strongly with the remarkable level of synteny already reported within the Pinaceae. It also suggests a convergent evolutionary mechanism of chromosomal block shuffling that has shaped the genomes of the spermatophytes.

20.
Ann Bot ; 114(8): 1687-700, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25355521

ABSTRACT

BACKGROUND AND AIMS: Distribution shifts and natural selection during past climatic changes are important factors in determining the genetic structure of forest species. In particular, climatic fluctuations during the Quaternary appear to have caused changes in the distribution ranges of plants, and thus strongly affected their genetic structure. This study was undertaken to identify the responses of the conifer Cryptomeria japonica, endemic to the Japanese Archipelago, to past climatic changes using a combination of phylogeography and species distribution modelling (SDM) methods. Specifically, this study focused on the locations of refugia during the last glacial maximum (LGM). METHODS: Genetic diversity and structure were examined using 20 microsatellite markers in 37 populations of C. japonica. The locations of glacial refugia were assessed using STRUCTURE analysis, and potential habitats under current and past climate conditions were predicted using SDM. The process of genetic divergence was also examined using the approximate Bayesian computation procedure (ABC) in DIY ABC to test the divergence time between the gene pools detected by the STRUCTURE analysis. KEY RESULTS: STRUCTURE analysis identified four gene pools: northern Tohoku district; from Chubu to Chugoku district; from Tohoku to Shikoku district on the Pacific Ocean side of the Archipelago; and Yakushima Island. DIY ABC analysis indicated that the four gene pools diverged at the same time before the LGM. SDM also indicated potential northern cryptic refugia. CONCLUSIONS: The combined evidence from microsatellites and SDM clearly indicates that climatic changes have shaped the genetic structure of C. japonica. The gene pool detected in northern Tohoku district is likely to have been established by cryptic northern refugia on the coast of the Japan Sea to the west of the Archipelago. The gene pool in Yakushima Island can probably be explained simply by long-term isolation from the other gene pools since the LGM. These results are supported by those of SDM and the predicted divergence time determined using ABC analysis.


Subject(s)
Cryptomeria/genetics , Ecosystem , Ice Cover , Genetic Variation , Genetics, Population , Geography , Japan , Population Dynamics , Principal Component Analysis , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...