Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Calcif Tissue Int ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951181

ABSTRACT

Vascular calcification affects the prognosis of patients with renal failure. Bisphosphonates are regarded as candidate anti-calcifying drugs because of their inhibitory effects on both calcium-phosphate aggregation and bone resorption. However, calcification in well-known rodent models is dependent upon bone resorption accompanied by excessive bone turnover, making it difficult to estimate accurately the anti-calcifying potential of drugs. Therefore, models with low bone resorption are required to extrapolate anti-calcifying effects to humans. Three bisphosphonates (etidronate, alendronate, and FYB-931) were characterised for their inhibitory effects on bone resorption in vivo and calcium-phosphate aggregation estimated by calciprotein particle formation in vitro. Then, their effects were examined using two models inducing ectopic calcification: the site where lead acetate was subcutaneously injected into mice and the transplanted, aorta obtained from a donor rat. The inhibitory effects of bisphosphonates on bone resorption and calcium-phosphate aggregation were alendronate > FYB-931 > etidronate and FYB-931 > alendronate = etidronate, respectively. In the lead acetate-induced model, calcification was most potently suppressed by FYB-931, followed by alendronate and etidronate. In the aorta-transplanted model, only FYB-931 suppressed calcification at a high dose. In both the models, no correlation was observed between calcification and bone resorption marker, tartrate-resistant acid phosphatase (TRACP). Results from the lead acetate-induced model showed that inhibitory potency against calcium-phosphate aggregation contributed to calcification inhibition. The two calcification models, especially the lead acetate-induced model, may be ideal for the extrapolation of calcifying response to humans because of calcium-phosphate aggregation rather than bone resorption as its mechanism.

2.
Biol Pharm Bull ; 46(12): 1737-1744, 2023.
Article in English | MEDLINE | ID: mdl-38044132

ABSTRACT

Ectopic calcification in the cardiovascular system adversely affects life prognosis. DBA/2 mice experience calcification owing to low expression of Abcc6 as observed in pseudoxanthoma elasticum (PXE) patients; however, little is known about its characteristics as a calcification model. In this study, we explore the suitability of a DBA/2 sub-strain as a PXE-like tissue calcification model, and the effect of a bisphosphonate which prevents calcification of soft tissues in hypercalcemic models was evaluated. The incidence of calcification of the heart was compared among several sub-strains and between both sexes of DBA/2 mice. mRNA expression of calcification-related genes was compared with DBA/2 sub-strains and other mouse strains. In addition, progression of calcification and calciprotein particle formation in serum were examined. Among several sub-strains of DBA/2 mice, male DBA/2CrSlc mice showed the most remarkable cardiac calcification. In DBA/2CrSlc mice, expression of the anti-calcifying genes Abcc6, Enpp1 and Spp1 was lower than that in C57BL/6J, and expression of Enpp1 and Spp1 was lower compared with other sub-strains. Calcification was accompanied by accelerated formation of calciprotein particle, which was prevented by daily treatment with bisphosphonate. A model suitable for ectopic calcification was identified by choosing a sub-strain of DBA/2 mice, in which genetic characteristics would contribute to extended calcification.


Subject(s)
Calcinosis , Pseudoxanthoma Elasticum , Humans , Female , Male , Mice , Animals , Pseudoxanthoma Elasticum/genetics , Pseudoxanthoma Elasticum/complications , Pseudoxanthoma Elasticum/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Calcinosis/complications , Calcinosis/genetics , Calcinosis/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Diphosphonates
4.
J Pharm Pharmacol ; 73(7): 947-955, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33882129

ABSTRACT

OBJECTIVE: Ectopic calcification such as vascular calcification, involves the formation of calciprotein particle (CPP), that is, colloidal particle of calcium phosphate bound to serum protein. In this study, a novel parameter for CPP formation was introduced, thereby the effect of FYB-931, a bisphosphonate compound was evaluated. METHODS: CPP formation in rat serum was assessed by the area under the curve (AUC) of the change in absorbance over time, and the commonly used T50, as indices. In vivo, the rats were treated with vitamin D3 to induce vascular calcification and then intravenously administered FYB-931 or etidronate thrice weekly for 2 weeks. KEY FINDINGS: In vitro, FYB-931 was the most potent inhibitor of CPP formation and it also inhibited the maximum response of CPP formation at higher concentrations. The AUC of the change in absorbance provided obvious dose-dependency, while T50 did not. FYB-931 dose-dependently prevented aortic calcification in vivo as well as CPP formation ex vivo more potently than etidronate. AUC showed a stronger correlation with the degree of aortic calcification than T50. CONCLUSIONS: The AUC in CPP formation can be an alternative parameter that reflects calcification. Based on the findings, FYB-931 has potential as an anti-calcifying agent.


Subject(s)
Calcium Phosphates , Diphosphonates/pharmacology , Vascular Calcification/drug therapy , Animals , Area Under Curve , Calcium Phosphates/blood , Calcium Phosphates/metabolism , Calcium-Regulating Hormones and Agents/pharmacology , Colloids , Dose-Response Relationship, Drug , Etidronic Acid/pharmacology , Rats , Treatment Outcome , Vascular Calcification/metabolism
5.
Plant Cell Rep ; 38(2): 161-172, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30506369

ABSTRACT

KEY MESSAGE: A key module, secretory component (SC), was efficiently expressed in Arabidopsis thaliana. The plant-based SC and immunoglobulin A of animal or plant origin formed secretory IgA that maintains antigen-binding activity. Plant expression systems are suitable for scalable and cost-effective production of biologics. Secretory immunoglobulin A (SIgA) will be useful as a therapeutic antibody against mucosal pathogens. SIgA is equipped with a secretory component (SC), which assists the performance of SIgA on the mucosal surface. Here we produced SC using a plant expression system and formed SIgA with dimeric IgAs produced by mouse cells as well as by whole plants. To increase the expression level, an endoplasmic reticulum retention signal peptide, KDEL (Lys-Asp-Glu-Leu), was added to mouse SC (SC-KDEL). The SC-KDEL cDNA was inserted into a binary vector with a translational enhancer and an efficient terminator. The SC-KDEL transgenic Arabidopsis thaliana produced SC-KDEL at the level of 2.7% of total leaf proteins. In vitro reaction of the plant-derived SC-KDEL with mouse dimeric monoclonal IgAs resulted in the formation of SIgA. When reacted with Shiga toxin 1 (Stx1)-specific ones, the antigen-binding activity was maintained. When an A. thaliana plant expressing SC-KDEL was crossed with one expressing dimeric IgA specific for Stx1, the plant-based SIgA exhibited antigen-binding activity. Leaf extracts of the crossbred transgenic plants neutralized Stx1 cytotoxicity against Stx1-sensitive cells. These results suggest that transgenic plants expressing SC-KDEL will provide a versatile means of SIgA production.


Subject(s)
Arabidopsis/metabolism , Immunoglobulin A, Secretory/metabolism , Protein Multimerization , Secretory Component/metabolism , Shiga Toxin 1/metabolism , Animals , Arabidopsis/genetics , Crosses, Genetic , DNA, Bacterial/genetics , Homozygote , Mice , Oligopeptides , Plants, Genetically Modified , Protein Sorting Signals
6.
Sci Rep ; 7: 45843, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368034

ABSTRACT

Shiga toxin is a major virulence factor of food-poisoning caused by Escherichia coli such as O157:H7. Secretory immunoglobulin (Ig) A (SIgA) is supposed to prevent infection of the mucosal surface and is a candidate agent for oral immunotherapy. We previously established a recombinant monoclonal antibody (mAb) consisting of variable regions from a mouse IgG mAb specific for the binding subunit of Shiga toxin 1 (Stx1) and the Fc region of mouse IgA. Here we produced a secretory form of the recombinant IgA (S-hyIgA) with transgenic Arabidopsis thaliana plant. All the S-hyIgA cDNAs (heavy, light, J chain and secretory component) were expressed under the control of a bidirectional promoter of a chlorophyll a/b-binding protein of A. thaliana without using a viral promoter. The plant-based S-hyIgA exhibited antigen binding, and was modified with plant-specific N-linked sugar chains. The Ig heavy chain and secretory components were observed in an intracellular protein body-like structure of the transgenic leaves on immuno-electron microscopy. An extract of the transgenic leaves neutralized the cytotoxicity of Stx1 toward butyrate-treated Caco-2 cells, a human colon carcinoma cell line. These results will contribute to the development of edible therapeutic antibodies such as those for the treatment of mucosal infection.


Subject(s)
Antibodies, Monoclonal/immunology , Arabidopsis/genetics , Escherichia coli O157/immunology , Immunoglobulin A/pharmacology , Infections/drug therapy , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/pharmacology , Arabidopsis/immunology , Caco-2 Cells , Escherichia coli O157/drug effects , Escherichia coli O157/pathogenicity , Humans , Immunoglobulin A/biosynthesis , Immunoglobulin A/immunology , Immunotherapy , Infections/immunology , Infections/microbiology , Mice , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Shiga Toxin/antagonists & inhibitors , Shiga Toxin/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...