Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 95: 174-81, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24095615

ABSTRACT

Selenium (Se) chemistry can be very complex in the natural environment, exhibiting different valence states (-2, 0, +4, +6) representing multiple inorganic, methylated, or complexed forms. Since redox associated shifts among most of known Se species can occur at environmentally relevant conditions, it is important to identify these species in order to assess their potential toxicity to organisms. In June of 2009, researchers from the US Army Engineer Research & Development Center (ERDC) conducted investigations of the fly ash spilled 6 months previously into the Emory River at the TVA Kingston Fossil Plant, TN. Ash samples were collected on site from both the original ash pile (that did not move during the levee failure), from the spill zone (including the Emory River), and from the ash recovery ditch (ARD) containing ash removed during dredging cleanup operations. The purpose of this work was to determine the state of Se in the spilled fly ash and to assess its potential for transformation and resultant chemical stability from its prolonged submersion in the river and subsequent dredging. Sequential chemical extractions suggested that the river environment shifted Se distribution toward organic/sulfide species. Speciation studies by bulk XANES analysis on fly ash samples showed that a substantial portion of the Se in the original ash pile had transformed from inorganic selenite to a mixture of Se sulfide and reduced (organo)selenium (Se(-II)) species over the 6-month period. µ-XRF mapping data showed that significant trends in the co-location of Se domains with sulfur and ash heavy metals. Ten-d extended elutriate tests (EETs) that were bubbled continuously with atmospheric air to simulate worst-case oxidizing conditions during dredging showed no discernible change in the speciation of fly ash selenium. The enhanced stability of the organo- and sulfide-selenium species coincided with the mixture of the ash material with humic materials in the river, corresponding with notable shifts in the ash carbon- and nitrogen-functionality.


Subject(s)
Coal Ash/chemistry , Models, Chemical , Rivers/chemistry , Selenium/chemistry , Water Pollutants, Chemical/chemistry , Metals, Heavy/analysis , Selenium/analysis , Water Pollutants, Chemical/analysis
2.
Environ Pollut ; 157(4): 1081-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19000646

ABSTRACT

Soil humic substances (HS) stabilize carbon nanotube (CNT) dispersions, a mechanism we hypothesized arose from the surfactive nature of HS. Experiments dispersing multi-walled CNT in solutions of dissolved Aldrich humic acid (HA) or water-extractable Catlin soil HS demonstrated enhanced stability at 150 and 300 mg L(-1) added Aldrich HA and Catlin HS, respectively, corresponding with decreased CNT mean particle diameter (MPD) and polydispersivity (PD) of 250 nm and 0.3 for Aldrich HA and 450 nm and 0.35 for Catlin HS. Analogous trends in MPD and PD were observed with addition of the surfactants Brij 35, Triton X-405, and SDS, corresponding to surfactant sorption maximum. NEXAFS characterization showed that Aldrich HA contained highly surfactive domains while Catlin soil possessed a mostly carbohydrate-based structure. This work demonstrates that the chemical structure of humic materials in natural waters is directly linked to their surfactive ability to disperse CNT released into the environment.


Subject(s)
Humic Substances , Nanotubes, Carbon/chemistry , Adsorption , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Materials Testing , Particle Size , Surface Properties , Surface-Active Agents/pharmacology , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...