Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Electrophoresis ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962855

ABSTRACT

Miniaturized systems have attracted much attention with the recent advances in microfluidics and nanofluidics. From the capillary electrophoresis, the development of glass-based microfluidic and nanofluidic technologies has supported advances in microfluidics and nanofluidics. Most microfluidic systems, especially nanofluidic systems, are still simple, such as systems constructed with simple straight nanochannels and bulk-scale electrodes. One of the bottlenecks to the development of more complicated and sophisticated systems is to develop the locally integrated nano-electrodes. However, there are still issues with integrating nano-electrodes into nanofluidic devices because it is difficult to fit the nano-electrode size into a nanofluidic channel at the nanometer level. In this study, we propose a new method for the fabrication of local nano-electrodes in nanofluidic devices with nanofluidic and nano-electrochemistry-based experiments. An electroplating solution was introduced to a nanochannel with control of the flow and the electroplating reaction, by which nano-electrodes were successfully fabricated. In addition, a nanofluidic device was available for nanofluidic experiments with the application of 200 kPa. This method can be applied to any electroplating material such as gold and copper. The local nano-electrode will make a significant contribution to the development of more complicated and sophisticated nanofluidic electrophoresis systems and to local electric detection methods for various nanofluidic devices.

2.
Anal Sci ; 39(6): 779-784, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36884162

ABSTRACT

With development of nanotechnologies, applications exploiting nanospaces such as single-molecule analysis and high-efficiency separation have been reported, and understanding properties of fluid flows in 101 nm to 102 nm scale spaces becomes important. Nanofluidics has provided a platform of nanochannels with defined size and geometry, and revealed various unique liquid properties including higher water viscosity with dominant surface effects in 102 nm spaces. However, experimental investigation of fluid flows in 101 nm spaces is still difficult owing to lack of fabrication procedure for 101 nm nanochannels with smooth walls and precisely controlled geometry. In the present study, we established a top-down fabrication process to realize fused-silica nanochannels with 101 nm scale size, 100 nm roughness and rectangular cross-sectional shape with an aspect ratio of 1. Utilizing a method of mass flowmetry developed by our group, accurate measurements of ultra-low flow rates in sub-100 nm nanochannels with sizes of 70 nm and 100 nm were demonstrated. The results suggested that the viscosity of water in these sub-100 nm nanochannels was approximately 5 times higher than that in the bulk, while that of dimethyl sulfoxide was similar to the bulk value. The obtained liquid permeability in the nanochannels can be explained by a hypothesis of loosely structured liquid phase near the wall generated by interactions between the surface silanol groups and protic solvent molecules. The present results suggest the importance of considering the species of solvent, the surface chemical groups, and the size and geometry of nanospaces when designing nanofluidic devices and membranes.

3.
Anal Sci ; 39(3): 251-255, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36670328

ABSTRACT

The lifetime of an enzyme is critical to prevent system failure and optimize maintenance schedules in biological and analytical chemistry. The lifetime metrics of an enzyme can be evaluated from enzyme activity in terms of catalytic cycles per enzyme at various storage times. Trypsin, which is a gold-standard enzyme in proteomics, has been known to decrease activity due to self-digestion. To improve the activity of trypsin, enzyme reactors have developed by immobilizing in micro and nanospace. However, an evaluation method for the catalytic cycle has not been established due to major issues such as nonuniform space, unstable liquid transport, and self-digestion during immobilization in conventional work. To solve these issues, we have previously developed an ultra-fast enzyme reactor with a well-defined nanofabrication method, stable liquid transport, and partial enzyme modification. Here, we aimed to investigate catalytic cycles in a nanochannel. To extend enzyme lifetime efficiently, we have evaluated the optimal immobilization process and catalytic cycles of trypsin. As a result, immobilized enzyme densities by the trypsinogen immobilization process were increased at all concentrations compared to the trypsin immobilization process. To evaluate the lifetime of trypsin, the immobilized enzyme densities and activities were almost the same before and after 72 h of enzyme storage, and the calculated catalytic cycles were 1740. These results indicated that self-digestion of the immobilized enzyme was highly suppressed. Consequently, the reaction efficiency has been evaluated depending on the catalytic cycles from the substrate for the first time, while preventing self-digestion by trypsin.


Subject(s)
Enzymes, Immobilized , Proteomics , Enzymes, Immobilized/metabolism , Trypsin/metabolism , Proteomics/methods , Catalysis , Bioreactors , Enzyme Stability
4.
Anal Methods ; 15(5): 675-684, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36655604

ABSTRACT

We developed a process for enzyme-linked immunosorbent assay on a glass microchip via the use of a thin-layered microfluidic channel. This channel possesses a high aspect ratio (width/depth ∼200) and has an antibody layer immobilized directly on the channel surface. A depth of several microns and an excessive width and length (mm scale) of the channel provide a large-volume capacity (102 nL) and maximum capture efficiency of the analyte for a high level of detection sensitivity (102 pg mL-1). The developed reusable immunosensor has demonstrated high-performance characteristics by requiring less than 50 µL of sample and providing analysis in less than 25 min. This new method could impact the development of point-of-care devices for biomedical applications.


Subject(s)
Biosensing Techniques , Microfluidics , Microfluidics/methods , Immunoassay , Enzyme-Linked Immunosorbent Assay/methods , Proteins
5.
Lab Chip ; 23(4): 727-736, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36484269

ABSTRACT

There have been significant advances in the field of nanofluidics, and novel technologies such as single-cell analysis have been demonstrated. Despite the evident advantages of nanofluidics, fluid control in nanochannels for complicated analyses is extremely difficult because the fluids are currently manipulated by maintaining the balance of driving pressure. To address this issue, the use of valves will be essential. Our group previously developed a nanochannel open/close valve utilizing glass deformation, but this has not yet been integrated into nanofluidic devices for analytical applications. In the present study, a nanofluidic analytical system integrated with multiple nanochannel open/close valves was developed. This system consists of eight pneumatic pumps, seven nanochannel open/close valves combined with piezoelectric actuators, and an ultra-high sensitivity detector for non-fluorescent molecules. For simultaneous actuation of multiple valves, a device holder was designed that prevented deformation of the entire device caused by operating the valves. A system was subsequently devised to align each valve and actuator with a precision of better than 20 µm to permit the operation of valves. The developed analytical system was verified by analyzing IL-6 molecules using an enzyme-linked immunosorbent assay. Fluid operations such as sample injection, pL-level aliquot sampling and flow switching were accomplished in this device simply by opening/closing specific valves, and a sample consisting of approximately 1500 IL-6 molecules was successfully detected. This study is expected to significantly improve the usability of nanofluidic analytical devices and lead to the realization of sophisticated analytical techniques such as single-cell proteomics.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Microfluidic Analytical Techniques , Enzyme-Linked Immunosorbent Assay/methods , Interleukin-6/chemistry , Microfluidic Analytical Techniques/methods , Nanotechnology/methods
6.
Anal Chem ; 94(45): 15686-15694, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36315424

ABSTRACT

Nanostructures can realize highly efficient reactions due to their structural advantages. However, the mechanism of accelerating enzyme reactions in a nanospace is still unknown from a kinetic perspective because it is difficult to control a well-defined nanospace, enzyme density, and reaction time. Here, we investigated kinetic parameters of an immobilized enzyme in micro- and nanochannels using nanofabrication, partial enzyme patterning, fluidic control, and a high sensitivity detection system. Devices with channel depths of 300 nm, 4.4 µm, and 13.6 µm were fabricated. Kinetic parameters were determined by the Michaelis-Menten model. Compared to the bulk reaction, all kcats for immobilized enzyme reactors were decreased, although the kcats were approximately the same for the immobilized enzyme reactors of different depths. An ultrafast enzyme reaction could overcome the drawback due to immobilization by an increase of the apparent [E]0 due to the decreased channel depth.


Subject(s)
Enzymes, Immobilized , Kinetics , Enzymes, Immobilized/chemistry
7.
Biomicrofluidics ; 16(4): 044109, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35992637

ABSTRACT

Liquids in 10-100 nm spaces are expected to play an important role in biological systems. However, the liquid properties and their influence on biological activity have been obscured due to the difficulty in nanoscale measurements, either in vivo or in vitro. In this study, an in vitro analytical platform for biological systems is established. The nanochannels were modified with lipid bilayers, thereby serving as a model for biological confinement, e.g., the intercellular or intracellular space. As a representative property, the proton diffusion coefficient was measured by a nanofluidic circuit using fluorescein as a pH probe. It was verified that proton conduction was enhanced for channel widths less than 330 nm. A proton-related enzymatic reaction, the hydrolysis reaction, was also investigated, and a large confinement effect was observed.

8.
Anal Chem ; 94(28): 10074-10081, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35793145

ABSTRACT

In the fields of biology and medicine, comprehensive protein analysis at the single-cell level utilizing mass spectrometry (MS) with pL sample volumes and zmol to amol sensitivity is required. Our group has developed nanofluidic analytical pretreatment methods that exploit nanochannels for downsizing chemical unit operations to fL-pL volumes. In the field of analytical instruments, mass spectrometers have advanced to achieve ultrahigh sensitivity. However, a method to interface between fL-pL pretreatments and mass spectrometers without sample loss and dispersion is still challenging. In this study, we developed an MS interface utilizing nanofluidics to achieve high-sensitivity detection. After charging analyte molecules by an applied voltage through an electrode, the liquid sample was converted to fL droplets by a nanofluidic device. Considering the inertial force that acts on the droplets, the droplets were carried with a controlled trajectory, even in turbulent air flow, and injected into a mass spectrometer with 100% efficiency. A module for heat transfer was designed and constructed, by which all of the injected droplets were vaporized to produce gas-phase ions. The detection of caffeine ions was achieved at a limit of detection of 1.52 amol, which was 290 times higher than a conventional MS interface by electrospray ionization with sample dispersion combined with a similar mass spectrometer. Therefore, sensitivity that was 2 orders of magnitude higher could be realized due to the 100% sample injection rate. The present study provides a new methodology for the analysis of ultrasmall samples with high-sensitivity, such as protein molecules produced from a single cell.


Subject(s)
Proteins , Spectrometry, Mass, Electrospray Ionization , Mechanical Phenomena , Spectrometry, Mass, Electrospray Ionization/methods
9.
Nanoscale ; 14(27): 9932, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35791958

ABSTRACT

Correction for 'Integration of sequential analytical processes into sub-100 nm channels: volumetric sampling, chromatographic separation, and label-free molecule detection' by Yoshiyuki Tsuyama et al., Nanoscale, 2021, 13, 8855-8863, https://doi.org/10.1039/D0NR08385B.

10.
Anal Sci ; 38(2): 281-287, 2022 02.
Article in English | MEDLINE | ID: mdl-35314973

ABSTRACT

With developments in analytical devices promoted by nanofluidics, estimation of the flow rate in a nanochannel has become important to calculate volumes of samples and reagents in chemical processing. However, measurement of the flow rate in nanospaces remains challenging. In the present study, a mass flowmetry system was developed, and the flow rate of water by pressure-driven flow in a fused-silica nanochannel was successfully measured in picoliters per second. We revealed that the water flow rate is dependent on the viscosity significantly increased in a square nanochannel with 102 nm width and depth (3.6 times higher than the bulk viscosity for a representative channel size of 190 nm) and slightly increased in a plate nanochannel with micrometer-scale width and 102 nm depth (1.3 times higher for that of 234 nm), because of dominant surface effects. The developed method and results obtained will greatly contribute to nanofluidics and other related fields.


Subject(s)
Nanotechnology , Water , Rheology
11.
Lab Chip ; 22(6): 1162-1170, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35133382

ABSTRACT

Single cell analyses can provide critical biological insight into cellular heterogeneity. In particular, the proteome, which governs cell functions, is much more difficult to analyze because it is principally impossible to amplify proteins compared to nucleic acids. The most promising approach to single cell proteomics is based on the liquid chromatography mass spectrometry (LC-MS) platform. However, pretreatments before MS detection have two critical issues for single cell analysis: analyte loss as a result of adsorption and artifacts due to the duration of analysis. This is a serious problem because single cells have a limited number of protein molecules and a small volume. To solve these issues, we developed an integrated nanofluidic device to manipulate samples on a femtoliter to picoliter (fL-pL) scale to achieve high-throughput analysis via suppressing analyte loss. This device can perform tryptic digestion, chromatographic separation, and non-labeled detection with high consistency. In addition, we introduced an open/close valve by physical deformation of glass on a nanometer scale to independently modify the nanochannel surfaces and control sample aliquots. The injection system equipped with this valve achieved an injection volume of 1.0 ± 0.1 pL. By using this integrated device, we found that the chromatogram of bulk-digestion for 12 hours resembled that of 15 min-digestion in the nanochannel, which indicated that these conditions reached a similar state of digestion. Therefore, an integrated device for ultra-fast protein analysis was developed on a 1 pL scale for the first time.


Subject(s)
Proteome , Proteomics , Mass Spectrometry , Proteolysis , Proteomics/methods , Single-Cell Analysis
12.
Micromachines (Basel) ; 14(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36677169

ABSTRACT

This study presents a novel technique for fabricating microfluidic devices with microbial transglutaminase-gelatin gels instead of polydimethylsiloxane (PDMS), in which flow culture simulates blood flow and a capillary network is incorporated for assays of vascular permeability or angiogenesis. We developed a gelatin-based device with a coverslip as the bottom, which allows the use of high-magnification lenses with short working distances, and we observed the differences in cell dynamics on gelatin, glass, and PDMS surfaces. The tubes of the gelatin microfluidic channel are designed to be difficult to pull out of the inlet hole, making sample introduction easy, and the gelatin channel can be manipulated from the cell introduction to the flow culture steps in a manner comparable to that of a typical PDMS channel. Human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts (NHDFs) were successfully co-cultured, resulting in structures that mimicked blood vessels with inner diameters ranging from 10 µm to 500 µm. Immunostaining and scanning electron microscopy results showed that the affinity of fibronectin for gelatin was stronger than that for glass or PDMS, making gelatin a suitable substrate for cell adhesion. The ability for microscopic observation at high magnification and the ease of sample introduction make this device easier to use than conventional gelatin microfluidics, and the above-mentioned small modifications in the device structure are important points that improve its convenience as a cell assay device.

13.
Micromachines (Basel) ; 12(11)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34832779

ABSTRACT

In nanofluidics, surface control is a critical technology because nanospaces are surface-governed spaces as a consequence of their extremely high surface-to-volume ratio. Various surface patterning methods have been developed, including patterning on an open substrate and patterning using a liquid modifier in microchannels. However, the surface patterning of a closed nanochannel is difficult. In addition, the surface evaluation of closed nanochannels is difficult because of a lack of appropriate experimental tools. In this study, we verified the surface patterning of a closed nanochannel by vacuum ultraviolet (VUV) light and evaluated the surface using streaming-current measurements. First, the C18 modification of closed nanochannels was confirmed by Laplace pressure measurements. In addition, no streaming-current signal was detected for the C18-modified surface, confirming the successful modification of the nanochannel surface with C18 groups. The C18 groups were subsequently decomposed by VUV light, and the nanochannel surface became hydrophilic because of the presence of silanol groups. In streaming-current measurements, the current signals increased in amplitude with increasing VUV light irradiation time, indicating the decomposition of the C18 groups on the closed nanochannel surfaces. Finally, hydrophilic/hydrophobic patterning by VUV light was performed in a nanochannel. Capillary filling experiments confirmed the presence of a hydrophilic/hydrophobic interface. Therefore, VUV patterning in a closed nanochannel was demonstrated, and the surface of a closed nanochannel was successfully evaluated using streaming-current measurements.

14.
Nat Commun ; 12(1): 5947, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642338

ABSTRACT

Systemic sclerosis (SSc) is a chronic multisystem disorder characterized by fibrosis and autoimmunity. Interleukin (IL)-31 has been implicated in fibrosis and T helper (Th) 2 immune responses, both of which are characteristics of SSc. The exact role of IL-31 in SSc pathogenesis is unclear. Here we show the overexpression of IL-31 and IL-31 receptor A (IL-31RA) in dermal fibroblasts (DFs) from SSc patients. We elucidate the dual role of IL-31 in SSc, where IL-31 directly promotes collagen production in DFs and indirectly enhances Th2 immune responses by increasing pro-Th2 cytokine expression in DFs. Furthermore, blockade of IL-31 with anti-IL-31RA antibody significantly ameliorates fibrosis and Th2 polarization in a mouse model of SSc. Therefore, in addition to defining IL-31 as a mediator of fibrosis and Th2 immune responses in SSc, our study provides a rationale for targeting the IL-31/IL-31RA axis in the treatment of SSc.


Subject(s)
Fibroblasts/immunology , Interleukins/genetics , Receptors, Interleukin/genetics , Scleroderma, Systemic/immunology , Th2 Cells/immunology , Adult , Aged , Animals , Antibodies, Monoclonal/pharmacology , Collagen Type I/genetics , Collagen Type I/immunology , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Female , Fibroblasts/drug effects , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Humans , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukins/immunology , Male , Mice , Middle Aged , Protein Isoforms/genetics , Protein Isoforms/immunology , Receptors, Interleukin/antagonists & inhibitors , Receptors, Interleukin/immunology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Skin/drug effects , Skin/immunology , Skin/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th2 Cells/drug effects , Th2 Cells/pathology
15.
Micromachines (Basel) ; 12(8)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34442539

ABSTRACT

In microfluidics, especially in nanofluidics, nanochannels with functionalized surfaces have recently attracted attention for use as a new tool for the investigation of chemical reaction fields. Molecules handled in the reaction field can reach the single-molecule level due to the small size of the nanochannel. In such surroundings, contamination of the channel surface should be removed at the single-molecule level. In this study, it was assumed that metal materials could contaminate the nanochannels during the fabrication processes; therefore, we aimed to develop metal-free fabrication processes. Fused silica channels 1000 nm-deep were conventionally fabricated using a chromium mask. Instead of chromium, electron beam resists more than 1000 nm thick were used and the lithography conditions were optimized. From the results of optimization, channels with 1000 nm scale width and depth were fabricated on fused silica substrates without the use of a chromium mask. In nanofluidic experiments, an oxidation reaction was observed in a device fabricated by conventional fabrication processes using a chromium mask. It was found that Cr6+ remained on the channel surfaces and reacted with chemicals in the liquid phase in the extended nanochannels; this effect occurred at least to the micromolar level. In contrast, the device fabricated with metal-free processes was free of artifacts induced by the presence of chromium. The developed fabrication processes and results of this study will be a significant contribution to the fundamental technologies employed in the fields of microfluidics and nanofluidics.

16.
Nanoscale ; 13(19): 8855-8863, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33949427

ABSTRACT

The progress of nanotechnology has developed nanofluidic devices utilizing nanochannels with a width and/or depth of sub-100 nm (101 nm channels), and several experiments have been implemented in ultra-small spaces comparable to DNAs and proteins. However, current experiments utilizing 101 nm channels focus on a single function or operation; integration of multiple analytical operations into 101 nm channels using nanofluidic circuits and fluidic control has yet to be realized despite the advantage of nanochannels. Herein, we report the establishment of a label-free molecule detection method for 101 nm channels and demonstration of sequential analytical processes using integrated nanofluidic devices. Our absorption-based detection method called photothermal optical diffraction (POD) enables non-invasive label-free molecule detection in 101 nm channels for the first time, and the limit of detection (LOD) of 1.8 µM is achieved in 70 nm wide and deep nanochannels, which corresponds to 7.5 molecules in the detection volume of 7 aL. As a demonstration of sampling in 101 nm channels, aL-fL volumetric sampling is performed using 90 nm deep cross-shaped nanochannels and pressure-driven fluidic control from three directions. Finally, the POD and volumetric sampling are combined with nanochannel chromatography, and separation analysis in 101 nm channels is demonstrated. The experimental results reported in this paper will contribute to the advances in 101 nm fluidic devices which have the potential to provide a novel platform for chemical/biological analyses.

17.
J Chromatogr A ; 1648: 462214, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34004365

ABSTRACT

Miniaturization of column diameter in liquid chromatography is one of the major trends in separation sciences toward single-cell proteomics and metabolomics. Micro/nanoscale open tubular (OT) capillaries are promising tools for efficient separation analyses of the ultra-small volume of samples. However, highly sensitive and label-free on-column detection is still challenging for such ultra-small capillaries. In this study, we developed a photothermal detector using optical diffraction phenomena by a single nanocapillary. Our detection method realized concentration determination of unlabeled sample solutions in a nanocapillary with 460 nm inner diameter. The calculated limit of detection was 0.12 µM, which corresponds to 16 molecules in a detection volume of 0.23 fL. Furthermore, normal-phase chromatography was performed on a 12 cm long nanocapillary, and femtoliter sample injection, efficient separation, and label-free detection of dye molecules were demonstrated. Our photothermal detector will be widely used as a universal tool for chemical/biological analyses using capillaries with micro/nanoscale diameters.


Subject(s)
Chromatography, Liquid/methods , Limit of Detection , Nanotechnology , Proteomics
18.
J Phys Chem B ; 125(12): 3178-3183, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33730502

ABSTRACT

Liquids confined in 10-100 nm spaces show different liquid properties from those in the bulk. Proton transfer plays an essential role in liquid properties. The Grotthuss mechanism, in which charge transfer occurs among neighboring water molecules, is considered to be dominant in bulk water. However, the rotational motion and proton transfer kinetics have not been studied well, which makes further analysis difficult. In this study, an isotope effect was used to study the kinetic effect of rotational motion and proton hopping processes by measurement of the viscosity, proton diffusion coefficient, and the proton hopping activation energy. As a result, a significant isotope effect was observed. These results indicate that the rotational motion is not significant, and the decrease of the proton hopping activation energy enhances the apparent proton diffusion coefficient.

19.
Micromachines (Basel) ; 11(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33182488

ABSTRACT

Nanofluidics have recently attracted significant attention with regard to the development of new functionalities and applications, and producing new functional devices utilizing nanofluidics will require the fabrication of nanochannels. Fused silica nanofluidic devices fabricated by top-down methods are a promising approach to realizing this goal. Our group previously demonstrated the analysis of a living single cell using such a device, incorporating nanochannels having different sizes (102-103 nm) and with branched and confluent structures and surface patterning. However, fabrication of geometrically-controlled nanochannels on the 101 nm size scale by top-down methods on a fused silica substrate, and the fabrication of micro-nano interfaces on a single substrate, remain challenging. In the present study, the smallest-ever square nanochannels (with a size of 50 nm) were fabricated on fused silica substrates by optimizing the electron beam exposure time, and the absence of channel breaks was confirmed by streaming current measurements. In addition, micro-nano interfaces between 103 nm nanochannels and 101 µm microchannels were fabricated on a single substrate by controlling the hydrophobicity of the nanochannel surfaces. A micro-nano interface for a single cell analysis device, in which a nanochannel was connected to a 101 µm single cell chamber, was also fabricated. These new fabrication procedures are expected to advance the basic technologies employed in the field of nanofluidics.

20.
Micromachines (Basel) ; 11(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977690

ABSTRACT

Nanofluidics, a discipline of science and engineering of fluids confined to structures at the 1-1000 nm scale, has experienced significant growth over the past decade. Nanofluidics have offered fascinating platforms for chemical and biological analyses by exploiting the unique characteristics of liquids and molecules confined in nanospaces; however, the difficulty to detect molecules in extremely small spaces hampers the practical applications of nanofluidic devices. Laser-induced fluorescence microscopy with single-molecule sensitivity has been so far a major detection method in nanofluidics, but issues arising from labeling and photobleaching limit its application. Recently, numerous label-free detection methods have been developed to identify and determine the number of molecules, as well as provide chemical, conformational, and kinetic information of molecules. This review focuses on label-free detection techniques designed for nanofluidics; these techniques are divided into two groups: optical and electrical/electrochemical detection methods. In this review, we discuss on the developed nanofluidic device architectures, elucidate the mechanisms by which the utilization of nanofluidics in manipulating molecules and controlling light-matter interactions enhances the capabilities of biological and chemical analyses, and highlight new research directions in the field of detections in nanofluidics.

SELECTION OF CITATIONS
SEARCH DETAIL
...