Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Z Naturforsch C J Biosci ; 65(3-4): 245-56, 2010.
Article in English | MEDLINE | ID: mdl-20469645

ABSTRACT

Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid that is present in high concentrations in the tea plant Camellia sinensis. Caffeine synthase (CS, EC 2.1.1.160) catalyzes the S-adenosyl-L-methionine-dependent N-3- and N-1-methylation of the purine base to form caffeine, the last step in the purine alkaloid biosynthetic pathway. We studied the expression profile of the tea caffeine synthase (TCS) gene in developing leaves and flowers by means of northern blot analysis, and compared it with those of phenylalanine ammonia lyase (PAL, EC 4.3.1.5), chalcone synthase (CHS, EC 2.3.1.74), and S-adenosyl-L-methionine synthase (SAMS, EC 2.5.1.6). The amount of TCS transcripts was highest in young leaves and declined markedly during leaf development, whereas it remained constant throughout the development of the flower. Environmental stresses other than heavy metal stress and plant hormone treatments had no effect on the expression of TCS genes, unlike the other three genes. Drought stress suppressed TCS gene expression in leaves, and the expression pattern mirrored that of the dehydrin gene. The amounts of TCS transcripts increased slightly on supply of a nitrogen source. We discuss the regulation of TCS gene expression.


Subject(s)
Caffeine/biosynthesis , Camellia sinensis/metabolism , Blotting, Northern , Camellia sinensis/enzymology , Camellia sinensis/genetics , DNA, Complementary/genetics , DNA, Plant/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Plant/genetics , RNA, Plant/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Ribonucleosides/metabolism , Tannins/metabolism , Theobromine/metabolism , Xanthines
2.
Mol Genet Genomics ; 275(2): 125-35, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16333668

ABSTRACT

Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are the major purine alkaloids in plants. To investigate the diversity of N-methyltransferases involved in purine alkaloid biosynthesis, we isolated the genes homologous for caffeine synthase from theobromine-accumulating plants. The predicted amino acid sequences of N-methyltransferases in theobromine-accumulating species in Camellia were more than 80% identical to caffeine synthase in C. sinensis. However, there was a little homology among the N-methyltransferases between Camellia and Theobroma. The recombinant enzymes derived from theobromine-accumulating plants had only 3-N-methyltransferase activity. The accumulation of purine alkaloids was, therefore, dependent on the substrate specificity of N-methyltransferase determined by one amino acid residue in the central part of the protein.


Subject(s)
Alkaloids/biosynthesis , Methyltransferases/metabolism , Alkaloids/chemistry , Amino Acid Sequence , Base Sequence , Cacao/enzymology , Cacao/genetics , Cacao/metabolism , Caffeine/biosynthesis , Camellia/enzymology , Camellia/genetics , Camellia/metabolism , Cloning, Molecular , DNA, Plant/genetics , Gene Library , Genes, Plant , Methyltransferases/chemistry , Methyltransferases/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Phylogeny , Plasmids/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Substrate Specificity , Theobromine/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...