Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Cancer Res ; 75(12): 2541-52, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25952651

ABSTRACT

Kidney cancer [or renal cell carcinoma (RCC)] is known as "the internist's tumor" because it has protean systemic manifestations, suggesting that it utilizes complex, nonphysiologic metabolic pathways. Given the increasing incidence of this cancer and its lack of effective therapeutic targets, we undertook an extensive analysis of human RCC tissue employing combined grade-dependent proteomics and metabolomics analysis to determine how metabolic reprogramming occurring in this disease allows it to escape available therapeutic approaches. After validation experiments in RCC cell lines that were wild-type or mutant for the Von Hippel-Lindau tumor suppressor, in characterizing higher-grade tumors, we found that the Warburg effect is relatively more prominent at the expense of the tricarboxylic acid cycle and oxidative metabolism in general. Further, we found that the glutamine metabolism pathway acts to inhibit reactive oxygen species, as evidenced by an upregulated glutathione pathway, whereas the ß-oxidation pathway is inhibited, leading to increased fatty acylcarnitines. In support of findings from previous urine metabolomics analyses, we also documented tryptophan catabolism associated with immune suppression, which was highly represented in RCC compared with other metabolic pathways. Together, our results offer a rationale to evaluate novel antimetabolic treatment strategies being developed in other disease settings as therapeutic strategies in RCC.


Subject(s)
Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Cell Line, Tumor , Humans , Metabolomics/methods , Neoplasm Grading , Proteomics/methods , Transfection
2.
Proteomics ; 15(15): 2655-68, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25825134

ABSTRACT

Protein adduction is considered to be critical to the loss of cellular homeostasis associated with environmental chemicals undergoing metabolic activation. Despite considerable effort, our understanding of the key proteins mediating the pathologic consequences from protein modification by electrophiles is incomplete. This work focused on naphthalene (NA) induced acute injury of respiratory epithelial cells and tolerance which arises after multiple toxicant doses to define the initial cellular proteomic response and later protective actions related to tolerance. Airways and nasal olfactory epithelium from mice exposed to 15 ppm NA either for 4 h (acute) or for 4 h/day × 7 days (tolerant) were used for label-free protein quantitation by LC/MS/MS. Cytochrome P450 2F2 and secretoglobin 1A1 are decreased dramatically in airways of mice exposed for 4 h, a finding consistent with the fact that CYPs are localized primarily in Clara cells. A number of heat shock proteins and protein disulfide isomerases, which had previously been identified as adduct targets for reactive metabolites from several lung toxicants, were upregulated in airways but not olfactory epithelium of tolerant mice. Protein targets that are upregulated in tolerance may be key players in the pathophysiology associated with reactive metabolite protein adduction. All MS data have been deposited in the ProteomeXchange with identifier PXD000846 (http://proteomecentral.proteomexchange.org/dataset/PXD000846).


Subject(s)
Epithelial Cells/drug effects , Epithelial Cells/metabolism , Naphthalenes/pharmacology , Proteome/metabolism , Animals , Bronchi/cytology , Bronchi/metabolism , Chromatography, Liquid , Cytochrome P-450 Enzyme System/metabolism , Down-Regulation/drug effects , Glycosylation/drug effects , Heat-Shock Proteins/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Protein Disulfide-Isomerases/metabolism , Proteomics/methods , Tandem Mass Spectrometry , Up-Regulation/drug effects , Uteroglobin/metabolism
3.
PLoS One ; 10(4): e0121937, 2015.
Article in English | MEDLINE | ID: mdl-25853821

ABSTRACT

Naphthalene is an environmental toxicant to which humans are exposed. Naphthalene causes dose-dependent cytotoxicity to murine airway epithelial cells but a link between exposure and human pulmonary disease has not been established. Naphthalene toxicity in rodents depends on P450 metabolism. Subsequent biotransformation results in urinary elimination of several conjugated metabolites. Glucuronide and sulfate conjugates of naphthols have been used as markers of naphthalene exposure but, as the current studies demonstrate, these assays provide a limited view of the range of metabolites generated from the parent hydrocarbon. Here, we present a liquid chromatography tandem mass spectrometry method for measurement of the glucuronide and sulfate conjugates of 1-naphthol as well as the mercapturic acids and N-acetyl glutathione conjugates from naphthalene epoxide. Standard curves were linear over 2 log orders. On column detection limits varied from 0.91 to 3.4 ng; limits of quantitation from 1.8 to 6.4 ng. The accuracy of measurement of spiked urine standards was -13.1 to + 5.2% of target and intra-day and inter-day variability averaged 7.2 (± 4.5) and 6.8 (± 5.0) %, respectively. Application of the method to urine collected from mice exposed to naphthalene at 15 ppm (4 hrs) showed that glutathione-derived metabolites accounted for 60-70% of the total measured metabolites and sulfate and glucuronide conjugates were eliminated in equal amounts. The method is robust and directly measures several major naphthalene metabolites including those derived from glutathione conjugation of naphthalene epoxide. The assays do not require enzymatic deconjugation, extraction or derivatization thus simplifying sample work up.


Subject(s)
Environmental Pollutants/metabolism , Environmental Pollutants/urine , Naphthalenes/metabolism , Naphthalenes/urine , Urinalysis/methods , Analytic Sample Preparation Methods , Animals , Chromatography, Liquid , Environmental Exposure , Humans , Linear Models , Male , Mice , Tandem Mass Spectrometry , Time Factors
4.
Fungal Genet Biol ; 73: 120-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25446508

ABSTRACT

Ergothioneine, a histidine derivative, is concentrated in conidia of ascomycetous fungi. To investigate the function of ergothioneine, we crossed the wild type Neurospora crassa (Egt(+)) and an ergothioneine non-producer (Egt(-), Δegt-1, a knockout in NCU04343.5) and used the Egt(+) and Egt(-) progeny strains for phenotypic analyses. Compared to the Egt(+) strains, Egt(-) strains had a 59% reduction in the number of conidia produced on Vogel's agar. After storage of Egt(+) and Egt(-) conidia at 97% and 52% relative humidity (RH) for a time course to either 17 or 98 days, respectively, Egt(-) strains had a 23% and a 18% reduction in life expectancy at 97% and 52% RH, respectively, compared to the Egt(+) strains. Based on a Cu(II) reduction assay with the chelator bathocuproinedisulfonic acid disodium salt, ergothioneine accounts for 38% and 33% of water-soluble antioxidant capacity in N. crassa conidia from seven and 20 day-old cultures, respectively. In contrast, ergothioneine did not account for significant (α=0.05) anti-oxidant capacity in mycelia, which have lower concentrations of ergothioneine than conidia. The data are consistent with the hypothesis that ergothioneine has an antioxidant function in vivo. In contrast, experiments on the spontaneous mutation rate in Egt(+) and Egt(-) strains and on the effects of 254 nm UV light on mutation rate and conidial viability do not support the hypothesis that ergothioneine protects DNA in vivo.


Subject(s)
Ergothioneine/metabolism , Mutagenesis/radiation effects , Spores, Fungal/metabolism , Antioxidants/metabolism , Ergothioneine/genetics , Mycelium/metabolism , Neurospora crassa/physiology , Spores, Fungal/radiation effects , Ultraviolet Rays
5.
Drug Metab Dispos ; 42(7): 1098-102, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24733789

ABSTRACT

Triclocarban (3,4,4'-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with (14)C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3'-glutathionyl-4'-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with (14)C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Carbanilides/pharmacokinetics , Cytochrome P-450 CYP1A1/metabolism , Glutathione/metabolism , Activation, Metabolic , Cell Line, Transformed , Humans
6.
Toxicol Appl Pharmacol ; 270(2): 97-105, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23602890

ABSTRACT

Naphthalene produces species and cell selective injury to respiratory tract epithelial cells of rodents. In these studies we determined the apparent Km, Vmax, and catalytic efficiency (Vmax/Km) for naphthalene metabolism in microsomal preparations from subcompartments of the respiratory tract of rodents and non-human primates. In tissues with high substrate turnover, major metabolites were derived directly from naphthalene oxide with smaller amounts from conjugates of diol epoxide, diepoxide, and 1,2- and 1,4-naphthoquinones. In some tissues, different enzymes with dissimilar Km and Vmax appeared to metabolize naphthalene. The rank order of Vmax (rat olfactory epithelium>mouse olfactory epithelium>murine airways>>rat airways) correlated well with tissue susceptibility to naphthalene. The Vmax in monkey alveolar subcompartment was 2% that in rat nasal olfactory epithelium. Rates of metabolism in nasal compartments of the monkey were low. The catalytic efficiencies of microsomes from known susceptible tissues/subcompartments are 10 and 250 fold higher than in rat airway and monkey alveolar subcompartments, respectively. Although the strong correlations between catalytic efficiencies and tissue susceptibility suggest that non-human primate tissues are unlikely to generate metabolites at a rate sufficient to produce cellular injury, other studies showing high levels of formation of protein adducts support the need for additional studies.


Subject(s)
Epoxy Compounds/metabolism , Microsomes/metabolism , Naphthalenes/metabolism , Naphthoquinones/metabolism , Nasal Mucosa/metabolism , Animals , Chromatography, High Pressure Liquid , Female , Kinetics , Macaca mulatta , Male , Mice , Rats , Rats, Sprague-Dawley
7.
Am J Respir Cell Mol Biol ; 48(1): 114-24, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23065132

ABSTRACT

Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAHs) and is a dominant contributor to urban particulate pollution (PM). Exposure to PM is linked to respiratory and cardiovascular morbidity and mortality in susceptible populations, such as children. PM can contribute to the development and exacerbation of asthma, and this is thought to occur because of the presence of electrophiles in PM or through electrophile generation via the metabolism of PAHs. Glutathione (GSH), an abundant intracellular antioxidant, confers cytoprotection through conjugation of electrophiles and reduction of reactive oxygen species. GSH-dependent phase II detoxifying enzymes glutathione peroxidase and glutathione S-transferase facilitate metabolism and conjugation, respectively. Ambient particulates are highly variable in composition, which complicates systematic study. In response, we have developed a replicable ultrafine premixed flame particle (PFP)-generating system for in vivo studies. To determine particle effects in the developing lung, 7-day-old neonatal and adult rats inhaled 22 µg/m(3) PFP during a single 6-hour exposure. Pulmonary GSH and related phase II detoxifying gene and protein expression were evaluated 2, 24, and 48 hours after exposure. Neonates exhibited significant depletion of GSH despite higher initial baseline levels of GSH. Furthermore, we observed attenuated induction of phase II enzymes (glutamate cysteine ligase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) in neonates compared with adult rats. We conclude that developing neonates have a limited ability to deviate from their normal developmental pattern that precludes adequate adaptation to environmental pollutants, which results in enhanced cytotoxicity from inhaled PM.


Subject(s)
Antioxidants/metabolism , Glutathione/metabolism , Lung/drug effects , Lung/metabolism , Particulate Matter/toxicity , Administration, Inhalation , Age Factors , Animals , Animals, Newborn , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione Disulfide/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Lung/growth & development , Male , Oxidative Stress/drug effects , Particulate Matter/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Vehicle Emissions/toxicity , Glutathione Peroxidase GPX1
8.
Fungal Genet Biol ; 51: 72-83, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23207689

ABSTRACT

Gamma-glutamyltransferase (GGT, EC 2.3.2.2) cleaves the γ-glutamyl linkage in glutathione (GSH). Three GGTs in the hemibiotrophic plant pathogen Colletotrichum graminicola were identified in silico. GGT mRNA expression was monitored by quantitative reverse-transcriptase PCR. Expression of all three genes was detected in planta during the biotrophic and necrotrophic stages of infection. Of the three GGTs, CgGGT1 mRNA (from gene GLRG_09590) was the most highly expressed. All three GGT mRNAs were up-regulated in wild type nitrogen-starved germlings in comparison to non-starved germlings. CgGGT1 was insertionally mutagenized in C. graminicola, complemented with the wild type form of the gene, and over-expressed. Enzyme assays of two independent CgGGT1 knockouts and the wild type indicated that CgGGT1 is the major GGT and accounts for 86% and 68% of total GGT activity in conidia and mycelia, respectively. The over-expressing strain had 8-fold and 3-fold more enzyme activity in conidia and mycelia, respectively, than the wild type. In an analysis of the GGT knockout, complemented and over-expressing strains, GGT1 transcript levels are highly correlated (r=0.95) with levels of total GGT enzyme activity. CgGGT1 and CgGGT2 genes in strains that had ectopic copies of CgGGT1 were not up-regulated by nitrogen-starvation, in contrast to the wild type. Deletion or over-expression of CgGGT1 had no effect on mRNA expression of CgGGT2 and CgGGT3. In broth in which 3 and 6mM glutathione (GSH) was the nitrogen source, the CgGGT1 over-expressing strain produced significantly (P<0.0001) more biomass than the wild type and complemented strains, whereas the CgGGT1Δ strains produced significantly (P<0.0001) less biomass than the wild type strain. This suggests that CgGGT1 is involved in utilizing GSH as a nitrogen source. However, deletion and over-expression of CgGGT1 had no effect on either virulence in wounded corn leaf sheaths or GSH levels in conidia and mycelia. Thus, the regulation of GSH concentration is apparently independent of CgGGT1 activity.


Subject(s)
Colletotrichum/enzymology , Colletotrichum/metabolism , Gene Expression Regulation, Fungal , Glutathione/metabolism , Nitrogen/metabolism , RNA, Messenger/biosynthesis , gamma-Glutamyltransferase/metabolism , Gene Deletion , Gene Expression Profiling , Genetic Complementation Test , Hyphae/enzymology , Hyphae/metabolism , Plant Diseases/microbiology , Plant Leaves/microbiology , Real-Time Polymerase Chain Reaction , Spores, Fungal/enzymology , Spores, Fungal/metabolism , Zea mays/microbiology
9.
PLoS One ; 7(8): e42053, 2012.
Article in English | MEDLINE | ID: mdl-22870282

ABSTRACT

Naphthalene is a volatile polycyclic aromatic hydrocarbon generated during combustion and is a ubiquitous chemical in the environment. Short term exposures of rodents to air concentrations less than the current OSHA standard yielded necrotic lesions in the airways and nasal epithelium of the mouse, and in the nasal epithelium of the rat. The cytotoxic effects of naphthalene have been correlated with the formation of covalent protein adducts after the generation of reactive metabolites, but there is little information about the specific sites of adduction or on the amino acid targets of these metabolites. To better understand the chemical species produced when naphthalene metabolites react with proteins and peptides, we studied the formation and structure of the resulting adducts from the incubation of model peptides with naphthalene epoxide, naphthalene diol epoxide, 1,2-naphthoquinone, and 1,4-naphthoquinone using high resolution mass spectrometry. Identification of the binding sites, relative rates of depletion of the unadducted peptide, and selectivity of binding to amino acid residues were determined. Adduction occurred on the cysteine, lysine, and histidine residues, and on the N-terminus. Monoadduct formation occurred in 39 of the 48 reactions. In reactions with the naphthoquinones, diadducts were observed, and in one case, a triadduct was detected. The results from this model peptide study will assist in data interpretation from ongoing work to detect peptide adducts in vivo as markers of biologic effect.


Subject(s)
Amino Acids/chemistry , Models, Chemical , Naphthalenes/chemistry , Peptides/chemistry , Amino Acids/metabolism , Animals , Mice , Naphthalenes/adverse effects , Nasal Mucosa/metabolism , Nasal Mucosa/pathology , Peptides/adverse effects , Rats
10.
Chem Biol Interact ; 199(2): 120-8, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22659010

ABSTRACT

The electrophilic metabolites of the polyaromatic hydrocarbon naphthalene have been shown to bind covalently to proteins and covalent adduct formation correlates with the cytotoxic effects of the chemical in the respiratory system. Although 1,2-naphthalene epoxide, naphthalene diol epoxide, 1,2-naphthoquinone, and 1,4-napthoquinone have been identified as reactive metabolites of interest, the role of each metabolite in total covalent protein adduction and subsequent cytotoxicity remains to be established. To better understand the target residues associated with the reaction of these metabolites with proteins, mass spectrometry was used to identify adducted residues following (1) incubation of metabolites with actin and protein disulfide isomerase (PDI), and (2) activation of naphthalene in microsomal incubations containing supplemental actin or PDI. All four reactive metabolites bound to Cys, Lys or His residues in actin and PDI. Cys17 of actin was the only residue adducted by all metabolites; there was substantial metabolite selectivity for the majority of adducted residues. Modifications of actin and PDI, following microsomal incubations containing ¹4C-naphthalene, were detected readily by 2D gel electrophoresis and phosphor imaging. However, target modifications on tryptic peptides from these isolated proteins could not be readily detected by MALDI/TOF/TOF and only three modified peptides were detected using high resolution-selective ion monitoring (HR-SIM). All the reactive metabolites investigated have the potential to modify several residues in a single protein, but even in tissues with very high rates of naphthalene activation, the extent of modification was too low to allow unambiguous identification of a significant number of modified residues in the isolated proteins.


Subject(s)
Actins/metabolism , Microsomes, Liver/metabolism , Naphthalenes/metabolism , Protein Disulfide-Isomerases/metabolism , Actins/chemistry , Amino Acid Sequence , Animals , Binding Sites , Male , Mice , Molecular Sequence Data , Naphthalenes/chemistry , Protein Binding , Protein Disulfide-Isomerases/chemistry , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
11.
Fungal Genet Biol ; 49(2): 160-72, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22209968

ABSTRACT

Ergothioneine (EGT) is a histidine derivative with sulfur on the imidazole ring and a trimethylated amine; it is postulated to have an antioxidant function. Although EGT apparently is only produced by fungi and some prokaryotes, it is acquired by animals and plants from the environment, and is concentrated in animal tissues in cells with an EGT transporter. Monobromobimane derivatives of EGT allowed conclusive identification of EGT by LC/MS and the quantification of EGT in Colletotrichum graminicola and Neurospora crassa conidia and mycelia. EGT concentrations were significantly (α=0.05) higher in conidia than in mycelia, with approximately 17X and 5X more in C. graminicola and N. crassa, respectively. The first EGT biosynthetic gene in a fungus was identified by quantifying EGT in N. crassa wild type and knockouts in putative homologs of actinomycete EGT biosynthetic genes. NcΔEgt-1, a strain with a knockout in gene NCU04343, does not produce EGT, in contrast to the wild type. To determine the effects of EGT in vivo, we compared NcΔEgt-1 to the wild type. NcΔEgt-1 is not pleiotropically affected in rate of hyphal elongation in Vogel's medium either with or without ammonium nitrate and in the rate of germination of macroconidia on Vogel's medium. The superoxide-producer menadione had indistinguishable effects on conidial germination between the two strains. Cupric sulfate also had indistinguishable effects on conidial germination and on hyphal growth between the two strains. In contrast, germination of NcΔEgt-1 conidia was significantly more sensitive to tert-butyl hydroperoxide than the wild type; germination of 50% (GI(50)) of the NcΔEgt-1 conidia was prevented at 2.7 mM tert-butyl hydroperoxide whereas the GI(50) for the wild type was 4.7 mM tert-butyl hydroperoxide, or at a 1.7X greater concentration. In the presence of tert-butyl hydroperoxide and the fluorescent reactive oxygen species indicator 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, significantly (P=0.0002) more NcΔEgt-1 conidia fluoresced than wild type conidia, indicating that EGT quenched peroxides in vivo. While five to 21-day-old conidia of both strains germinated 100%, NcΔEgt-1 conidia had significantly (P<0.001) diminished longevity. Linear regression analysis indicates that germination of the wild type declined to 50% in 35 days, in comparison to 25 days for the NcΔEgt-1, which is equivalent to a 29% reduction in conidial life span in the NcEgt-1 deletion strain. Consequently, the data indicate that endogenous EGT helps protect conidia during the quiescent period between conidiogenesis and germination, and that EGT helps protect conidia during the germination process from the toxicity of peroxide but not from superoxide or Cu(2+). Based on an in silico analysis, we postulate that NcEgt-1 was acquired early in the mycota lineage as a fusion of two adjacent prokaryotic genes, that was then lost in the Saccharomycotina, and that NcEgt-1 catalyzes the first two steps of EGT biosynthesis from histidine to hercynine to hercynylcysteine sulfoxide.


Subject(s)
Colletotrichum/genetics , Ergothioneine/biosynthesis , Ergothioneine/genetics , Genes, Fungal , Neurospora crassa/genetics , Spores, Fungal/growth & development , Antioxidants/metabolism , Colletotrichum/metabolism , Ergothioneine/isolation & purification , Fluoresceins/pharmacology , Gene Knockout Techniques , Hyphae/genetics , Hyphae/growth & development , Molecular Weight , Mutation , Mycelium/genetics , Mycelium/growth & development , Peroxides/toxicity , Spores, Fungal/genetics , tert-Butylhydroperoxide/pharmacology
12.
Nucl Instrum Methods Phys Res B ; 268(7-8): 1324-1327, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20454606

ABSTRACT

Naphthalene is a volatile aromatic hydrocarbon to which humans are exposed from a variety of sources including mobile air sources and cigarette smoke. Naphthalene produces dose- (concentration) dependent injury to airway epithelial cells of murine lung which is observed at concentrations well below the current occupational exposure standard. Toxicity is dependent upon the cytochrome P450 mediated metabolic activation of the parent substrate to unstable metabolites which become bound covalently to tissue proteins. Nearly 70 proteins have been identified as forming adducts with reactive naphthalene metabolites using in vitro systems but very little work has been conducted in vivo because reasonably large amounts (100 µCi) of (14)C labeled parent compound must be administered to generate detectable adduct levels on storage phosphor screens following separation of labeled proteins by 2 D gel electrophoresis. The work described here was done to provide proof of concept that protein separation by free flow electrophoresis followed by AMS detection of protein fractions containing protein bound reactive metabolites would provide adducted protein profiles in animals dosed with trace quantities of labeled naphthalene. Mice were administered 200 mg/kg naphthalene intraperitoneally at a calculated specific activity of 2 DPM/nmol (1 pCi/nmol) and respiratory epithelial tissue was obtained by lysis lavage 4 hr post injection. Free flow electrophoresis (FFE) separates proteins in the liquid phase over a large pH range (2.5-11.5) using low molecular weight acids and bases to modify the pH. The apparatus separates fractions into standard 96-well plates that can be used in other protein analysis techniques. The buffers of the fractions have very high carbon content, however, and need to be dialyzed to yield buffers compatible with (14)C-AMS. We describe the processing techniques required to couple FFE to AMS for quantitation of protein adducts.

13.
Environ Health Perspect ; 118(5): 647-52, 2010 May.
Article in English | MEDLINE | ID: mdl-20435546

ABSTRACT

BACKGROUND: Naphthalene is a volatile hydrocarbon that causes dose-, species-, and cell type-dependent cytotoxicity after acute exposure and hyperplasia/neoplasia after lifetime exposures in rodents. Toxicity depends on metabolic activation, and reactive metabolite binding correlates with tissue and site susceptibility. OBJECTIVES: We compared proteins adducted in nasal epithelium from rats and rhesus macaques in vitro. METHODS: Adducted proteins recovered from incubations of nasal epithelium and 14C-naphthalene were separated by two-dimensional (2D) gel electrophoresis and imaged to register radioactive proteins. We identified proteins visualized by silver staining on complementary non-radioactive gels by peptide mass mapping. RESULTS: The levels of reactive metabolite binding in incubations of rhesus ethmo-turbinates and maxillo-turbinates are similar to those in incubations of target tissues, including rat septal/-olfactory regions and murine dissected airway incubations. We identified 40 adducted spots from 2D gel separations of rat olfactory epithelial proteins; 22 of these were non-redundant. In monkeys, we identified 19 spots by mass spectrometry, yielding three non-redundant identifications. Structural proteins (actin/tubulin) were prominent targets in both species. CONCLUSIONS: In this study we identified potential target proteins that may serve as markers closely associated with toxicity. The large differences in previously reported rates of naphthalene metabolism to water-soluble metabolites in dissected airways from mice and monkeys are not reflected in similar differences in covalent adduct formation in the nose. This raises concerns that downstream metabolic/biochemical events are very similar between the rat, a known target for naphthalene toxicity and tumorigenicity, and the rhesus macaque, a species similar to the human.


Subject(s)
Naphthalenes/toxicity , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Proteins/drug effects , Animals , Disease Models, Animal , Environmental Pollutants/toxicity , Female , Humans , In Vitro Techniques , Lung Diseases/chemically induced , Lung Diseases/metabolism , Macaca mulatta , Male , Mice , Proteins/chemistry , Proteins/metabolism , Rats , Rats, Sprague-Dawley , Species Specificity
14.
Am J Respir Cell Mol Biol ; 43(3): 316-25, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19843705

ABSTRACT

Naphthalene (NA) is a semivolatile aromatic hydrocarbon to which humans are exposed from a variety of sources. NA results in acute cytotoxicity to respiratory epithelium in rodents. Cytochrome P450-dependent metabolic activation to form reactive intermediates and loss of soluble cellular thiols (glutathione) are critical steps in NA toxicity, but the precise mechanisms by which this chemical results in cellular injury remain unclear. Protein thiols are likely targets of reactive NA metabolites. Loss of these, through adduction or thiol oxidation mechanisms, may be important underlying mechanisms for NA toxicity. To address the hypothesis that loss of thiols on specific cellular proteins is critical to NA-induced cytotoxicity, we compared reduced to oxidized thiol ratios in airway epithelial cell proteins isolated from lungs of mice treated with NA or the nontoxic glutathione depletor, diethyl maleate (DEM). At 300 mg/kg doses, NA administration resulted in a greater than 85% loss of glutathione levels in the airway epithelium, which is similar to the loss observed after DEM treatment. Using differential fluorescent maleimide labeling followed by 2DE separation of proteins, we identified more than 35 unique proteins that have treatment-specific differential sulfhydryl oxidation. At doses of NA and DEM that produce similar levels of glutathione depletion, Cy3/Cy5 labeling ratios were statistically different for 16 nonredundant proteins in airway epithelium. Proteins identified include a zinc finger protein, several aldehyde dehydrogenase variants, beta-actin, and several other structural proteins. These studies show distinct patterns of protein thiol alterations with the noncytotoxic DEM and the cytotoxic NA.


Subject(s)
Glutathione/metabolism , Maleates/pharmacology , Naphthalenes/pharmacology , Respiratory Mucosa/drug effects , Animals , Chromatography, High Pressure Liquid , Electrophoresis, Gel, Two-Dimensional , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Male , Mice , Oxidation-Reduction , Respiratory Mucosa/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfhydryl Compounds/metabolism , Tandem Mass Spectrometry
15.
Toxicology ; 260(1-3): 16-27, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19464565

ABSTRACT

Naphthalene and close structural analogues have been shown to cause necrosis of bronchiolar epithelial cells in mice by both inhalation exposure and by systemic administration. Cancer bioassays of naphthalene in mice have demonstrated a slight increase in bronchiolar/alveolar adenomas in female mice, and in inflammation and metaplasia of the olfactory epithelium in the nasal cavity. Similar work in rats demonstrated a significant, and concentration-dependent increase in the incidence of respiratory epithelial adenomas and neuroblastomas in the nasal epithelium of both male and female rats. Although the studies on the acute toxicity of the methylnaphthalene derivatives are more limited, it appears that the species selective toxicity associated with naphthalene administration also is observed with methylnaphthalenes. Chronic administration of the methylnaphthalenes, however, failed to demonstrate the same oncogenic potential as that observed with naphthalene. The information available on the isopropylnaphthalene derivatives suggests that they are not cytotoxic. Like the methylnaphthalenes, 1-nitronaphthalene causes lesions in both Clara and ciliated cells. However, the species selective lung toxicity observed in the mouse with both naphthalene and the methylnaphthalenes is not seen with 1-nitronaphthalene. With 1-nitronaphthalene, the rat is far more susceptible to parenteral administration of the compound than mice. The wide-spread distribution of these compounds in the environment and the high potential for low level exposure to humans supports a need for further work on the mechanisms of toxicity in animal models with attention to whether these processes are applicable to humans. Although it is tempting to suppose that the toxicity and mechanisms of toxicity of the alkylnaphthalenes and nitronaphthalenes are similar to naphthalene, there is sufficient published literature to suggest that this may not be the case. Certainly the enzymes involved in the metabolic activation of each of these substrates are likely to differ. The available data showing extensive oxidation of the aromatic nucleus of naphthalene, nitronaphthalene and the methylnaphthalenes (with some oxidation of the methyl group) contrast with the isopropylnaphthalene derivatives, where the major metabolites involve side chain oxidation. Overall, these data support the view that ring epoxidation is a key step in the process involved in cytotoxicity. Whether the epoxide itself or a downstream metabolite mediates the toxic effects is still not clear even with naphthalene, the best studied of this group of compounds. Additional work is needed in several areas to further assess the potential human health consequences of exposure to these agents. These studies should involve the definition of the extent and severity of methylnaphthalene toxicity after single dose exposures with attention to both the nasal and respiratory epithelia. The cytochromes P450 responsible for the initial activation of these agents in rodents with subsequent complimentary studies in primate models should help determine whether key metabolic processes responsible for toxicity occur also in primates. Finally, the precise involvement of reactive metabolite formation and adduction of cellular proteins in toxicity will be important in not only assessing the potential for human toxicity, but also in developing an understanding of the genetic and environmental factors which could alter the toxicity of these agents.


Subject(s)
Naphthalenes/metabolism , Naphthalenes/toxicity , Animals , Environmental Exposure/adverse effects , Humans , Lung Diseases/chemically induced , Lung Diseases/metabolism
16.
Arch Biochem Biophys ; 478(1): 7-17, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18671936

ABSTRACT

Glutathione S-transferases (GST) were characterized from the digestive gland of Cyphoma gibbosum (Mollusca; Gastropoda), to investigate the possible role of these detoxification enzymes in conferring resistance to allelochemicals present in its gorgonian coral diet. We identified the collection of expressed cytosolic Cyphoma GST classes using a proteomic approach involving affinity chromatography, HPLC and nano-spray liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two major GST subunits were identified as putative mu-class GSTs; while one minor GST subunit was identified as a putative theta-class GST, apparently the first theta-class GST identified from a mollusc. Two Cyphoma GST cDNAs (CgGSTM1 and CgGSTM2) were isolated by RT-PCR using primers derived from peptide sequences. Phylogenetic analyses established both cDNAs as mu-class GSTs and revealed a mollusc-specific subclass of the GST-mu clade. These results provide new insights into metazoan GST diversity and the biochemical mechanisms used by marine organisms to cope with their chemically defended prey.


Subject(s)
Glutathione Transferase/metabolism , Proteomics/methods , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Cloning, Molecular , DNA Primers/chemistry , DNA, Complementary/metabolism , Gastropoda , Mass Spectrometry , Models, Biological , Molecular Sequence Data , Phylogeny , Sequence Homology, Amino Acid
17.
Chem Res Toxicol ; 21(5): 1074-85, 2008 May.
Article in English | MEDLINE | ID: mdl-18416539

ABSTRACT

The significance of free radicals in biology has been established by numerous investigations spanning a period of over 40 years. Whereas there are many intracellular targets for these radical species, the importance of cysteine thiol posttranslational modification has received considerable attention. The current studies present a highly sensitive method for measurement of the posttranslational modification of protein thiols. This method is based on labeling of proteins with monofunctional maleimide dyes followed by 2D gel electrophoresis to separate proteins and multiplexed fluorescent imaging analysis. The method correctly interrogates the thiol/disulfide ratio present in commercially available proteins. Exposure of pulmonary airway epithelial cells to high concentrations of menadione or t-butyl hydroperoxide resulted in the modification of cysteines in more than 141 proteins of which 60 were subsequently identified by MALDI-TOF/TOF MS. Although some proteins were modified similarly by these two oxidants, several showed detectably different maleimide ratios in response to these two agents. Proteins that were modified by one or both oxidants include those involved in transcription, protein synthesis and folding, and cell death/growth. In conclusion, these studies provide a novel procedure for measuring the redox status of cysteine thiols on individual proteins with a clearly demonstrated applicability to interactions of chemicals with pulmonary epithelial cells.


Subject(s)
Fluorescent Dyes/chemistry , Oxidative Stress , Proteins/chemistry , Sulfhydryl Compounds/chemistry , Animals , Disulfides/chemistry , Disulfides/metabolism , Electrophoresis, Gel, Two-Dimensional , Hydrolysis , Male , Maleimides/chemistry , Oxidation-Reduction , Phosphines , Proteins/metabolism , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Vitamin K 3/chemistry , tert-Butylhydroperoxide/chemistry
18.
Chem Res Toxicol ; 21(4): 951-7, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18363382

ABSTRACT

The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of xenobiotics such as polyaromatic toxicants. Additionally, polymorphism studies have underlined a potential role of this enzyme in relation to a number of diseases, such as emphysema, spontaneous abortion, eclampsia, and several forms of cancer. We recently demonstrated that fatty amides, such as elaidamide, represent a new class of potent inhibitors of mEH. While these compounds are very active on recombinant mEH in vitro, they are quickly inactivated in liver extracts reducing their value in vivo. We investigated the effect of structural changes on mEH inhibition potency and microsomal stability. Results obtained indicate that the presence of a small alkyl group alpha to the terminal amide function and a thio-ether beta to this function increased mEH inhibition by an order of magnitude while significantly reducing microsomal inactivation. The addition of a hydroxyl group 9-10 carbons from the terminal amide function resulted in better inhibition potency without improving microsomal stability. The best compound obtained, 2-nonylsulfanyl-propionamide, is a competitive inhibitor of mEH with a K I of 72 nM. Furthermore, this new inhibitor significantly reduces mEH diol production in ex vivo lungs exposed to naphthalene, underlying the usefulness of the inhibitors described herein. These novel inhibitors could be valuable tools to investigate the physiological and biological roles of mEH.


Subject(s)
Epoxide Hydrolases/antagonists & inhibitors , Recombinant Proteins/antagonists & inhibitors , Animals , Epoxide Hydrolases/genetics , Male , Mice , Microsomes, Liver/metabolism , Naphthalenes/metabolism , Rats , Recombinant Proteins/genetics
19.
Ecotoxicol Environ Saf ; 69(1): 58-63, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17391762

ABSTRACT

Electrophilic compounds are ubiquitous in the environment and aquatic life is inevitably affected. Glutathione S-transferases (GSTs) are a class of enzymes that facilitate the detoxification of these electrophiles in phase II metabolism. In this study, cytosolic GSTs were isolated and characterized from striped bass liver (Morone saxitilis). Nanospray liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to elucidate peptide sequences, and the proteins were found to have homology to rho and alpha by searching against the NCBI non-redundant database (nrDB). Catalytic activities of the cytosolic GSTs towards 1-chloro-2,4-dinitrobenzene (CDNB) were determined to be 141+/-34 and 155+/-65nmol/min/mg for males and females, respectively (both n=3). However, sex differences in classes expressed and activity toward CDNB were not statistically significant (p>0.05).


Subject(s)
Bass/metabolism , Cytosol/enzymology , Glutathione Transferase/metabolism , Amino Acid Sequence , Animals , Gene Expression Regulation , Glutathione Transferase/chemistry , Glutathione Transferase/genetics
20.
Biochim Biophys Acta ; 1772(7): 773-80, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17499976

ABSTRACT

Mutations in the frataxin gene cause neurodegeneration and demyelination in Friedreich's ataxia. We showed earlier that frataxin deficiency causes primary iron-sulfur cluster defects, and later causes defects in heme and cytochrome c hemoprotein levels. Iron-sulfur (Fe/S) clusters are required in two enzymes of heme biosynthesis in humans i.e. in ferrochelatase and adrenodoxin. However, decreases in ferrochelatase activity have not been observed in frataxin-deficient HeLa cells or patient lymphoblasts. We knocked down frataxin in oligodendroglioma cells using siRNA, which produced significant defects in the activity of the Fe/S cluster enzymes adrenodoxin and aconitase, the adrenodoxin product heme a, and cytochrome oxidase, for which heme a serves as a prosthetic group. Exogenous hemin produced a significant rescue of adrenodoxin, aconitase, heme a levels and cytochrome oxidase activity. Thus hemin rescues iron-sulfur cluster defects that are the result of frataxin-deficiency, perhaps as a consequence of increasing the pool of bioavailable iron, and thus should be more fully tested for beneficial effects in Friedreich's ataxia models.


Subject(s)
Adrenodoxin/metabolism , Electron Transport Complex IV/metabolism , Heme/analogs & derivatives , Hemin/pharmacology , Iron-Binding Proteins/metabolism , Oligodendroglioma/metabolism , Base Sequence , Chromatography, High Pressure Liquid , DNA Primers , HeLa Cells , Heme/metabolism , Humans , Iron-Binding Proteins/genetics , Iron-Sulfur Proteins/metabolism , Oligodendroglioma/enzymology , Oligodendroglioma/pathology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL
...