Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(1): e3001942, 2023 01.
Article in English | MEDLINE | ID: mdl-36603027

ABSTRACT

RNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome. RNase E-based RNA degradosomes are inner membrane proteins in a large family of gram-negative bacteria (ß- and γ-Proteobacteria). Until now, the reason for membrane localization was not understood. Here, we show that a mutant strain of Escherichia coli, in which the RNA degradosome is localized to the interior of the cell, has high levels of 20S and 40S particles that are defective intermediates in ribosome assembly. These particles have aberrant protein composition and contain rRNA precursors that have been cleaved by RNase E. After RNase E cleavage, rRNA fragments are degraded to nucleotides by exoribonucleases. In vitro, rRNA in intact ribosomes is resistant to RNase E cleavage, whereas protein-free rRNA is readily degraded. We conclude that RNA degradosomes in the nucleoid of the mutant strain interfere with cotranscriptional ribosome assembly. We propose that membrane-attached RNA degradosomes in wild-type cells control the quality of ribosome assembly after intermediates are released from the nucleoid. That is, the compact structure of mature ribosomes protects rRNA against cleavage by RNase E. Turnover of a proportion of intermediates in ribosome assembly explains slow growth of the mutant strain. Competition between mRNA and rRNA degradation could be the cause of slower mRNA degradation in the mutant strain. We conclude that attachment of the RNA degradosome to the bacterial inner cytoplasmic membrane prevents wasteful degradation of rRNA precursors, thus explaining the reason for conservation of membrane-attached RNA degradosomes throughout the ß- and γ-Proteobacteria.


Subject(s)
Escherichia coli Proteins , RNA, Ribosomal , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Ribosomes/metabolism , Multienzyme Complexes/metabolism , RNA/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Cell Membrane/metabolism , Bacteria/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Bacterial/genetics
2.
Mol Microbiol ; 111(6): 1715-1731, 2019 06.
Article in English | MEDLINE | ID: mdl-30903628

ABSTRACT

The reason for RNase E attachment to the inner membrane is largely unknown. To understand the cell biology of RNA degradation, we have characterized a strain expressing RNase E lacking the membrane attachment site (cytoplasmic RNase E). Genome-wide data show a global slowdown in mRNA degradation. There is no correlation between mRNA stabilization and the function or cellular location of encoded proteins. The activity of cRNase E is comparable to the wild-type enzyme in vitro, but the mutant protein is unstable in vivo. Autoregulation of cRNase E synthesis compensates for protein instability. cRNase E associates with other proteins to assemble a cytoplasmic RNA degradosome. CsrB/C sRNAs, whose stability is regulated by membrane-associated CsrD, are stabilized. Membrane attachment of RNase E is thus necessary for CsrB/C turnover. In contrast to mRNA stability, ribosome-free transcripts are sensitive to inactivation by cRNase E. Our results show that effects on RNA degradation are not due to the differences in the activity or level of cRNase E, or failure to assemble the RNA degradosome. We propose that membrane attachment is necessary for RNase E stability, functional interactions with membrane-associated regulatory factors and protection of ribosome-free transcripts from premature interactions with RNase E in the nucleoid.


Subject(s)
Endoribonucleases/metabolism , Escherichia coli/genetics , Multienzyme Complexes/metabolism , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA Helicases/metabolism , RNA Stability , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Proteolysis , RNA, Bacterial/metabolism , RNA, Messenger/metabolism , Ribosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...