Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Cell Res ; 398(2): 112416, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33307020

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), a progressive disorder of unknown etiology, is characterized by pathological lung fibroblast activation and proliferation resulting in abnormal deposition of extracellular matrix proteins within the lung parenchyma. The pathophysiological roles of exosomal microRNAs in pulmonary fibrosis remain unclear; therefore, we aimed to identify and characterize fibrosis-responsive exosomal microRNAs. We used microRNA array analysis and profiled the expression of exosome-derived miRNA in sera of C57BL/6 mice exhibiting bleomycin-induced pulmonary fibrosis. The effect of microRNAs potentially involved in fibrosis was then evaluated in vivo and in vitro. The expression of exosomal microRNA-16 was increased by up to 8.0-fold on day 14 in bleomycin-treated mice, compared to vehicle-treated mice. MicroRNA-16 mimic administration on day 14 after bleomycin challenge ameliorated pulmonary fibrosis and suppressed lung and serum expression of secreted protein acidic and rich in cysteine (SPARC). Pretreatment of human lung fibroblasts with the microRNA-16 mimic decreased the expression of rapamycin-insensitive companion of mTOR (Rictor) and TGF-ß1-induced expression of SPARC. This is the first study reporting the anti-fibrotic properties of microRNA-16 and demonstrating that these effects occur via the mTORC2 pathway. These findings support that microRNA-16 may be a promising therapeutic target for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , MicroRNAs/metabolism , Osteonectin/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Animals , Exosomes/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Mice , Mice, Inbred C57BL
2.
J Nippon Med Sch ; 87(3): 118-128, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-31776321

ABSTRACT

BACKGROUND: Although aberrant proliferation and activation of lung fibroblasts are implicated in the initiation and progression of idiopathic pulmonary fibrosis (IPF), the underlying mechanisms are not well characterized. Numerous microRNAs (miRNAs) have been implicated in this process; however, miRNAs derived from exosomes and the relevance of such miRNAs to fibroblast-to-myofibroblast differentiation are not well understood. In this study, we attempted to identify exosome-derived miRNAs relevant to fibrosis development. METHODS: Using miRNA array analysis, we profiled exosome-derived miRNA expression in sera of C57BL/6 mice exhibiting bleomycin-induced pulmonary fibrosis. After validating a selected miRNA by quantitative reverse-transcription polymerase chain reaction, its effect on fibroblast-to-myofibroblast differentiation was investigated in human lung fibroblasts. Furthermore, we determined the role of the selected miRNA in an in vivo model of pulmonary fibrosis. RESULTS: MiRNA array analysis revealed that miR-22 expression was increased by up to 2 fold on day 7 after bleomycin treatment compared with that in vehicle-treated mice. In vitro, miR-22 transfection suppressed TGF-ß1-induced α-SMA expression. This was mediated via inhibition of the ERK1/2 pathway. Baseline α-SMA expression was increased upon miR-22 inhibitor transfection. Furthermore, miR-22 negatively regulated connective tissue growth factor expression in the presence of TGF-ß1. In vivo, administration of a miR-22 mimic on day 10 after bleomycin challenge ameliorated pulmonary fibrosis lesions accompanied by decreased α-SMA expression in the model mice. CONCLUSIONS: Exosomal miR-22 modulates fibroblast-to-myofibroblast differentiation. The present findings warrant further study, which could shed light on miR-22 as a novel therapeutic target in IPF.


Subject(s)
Cell Differentiation/genetics , Exosomes/genetics , Exosomes/physiology , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , MicroRNAs/physiology , Myofibroblasts/pathology , Actins/genetics , Actins/metabolism , Animals , Disease Models, Animal , Gene Expression/genetics , In Vitro Techniques , MAP Kinase Signaling System/genetics , Male , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Respir Res ; 19(1): 71, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29690905

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality, and the pathogenesis of the disease is still incompletely understood. Although lymphocytes, especially CD4+CD25+FoxP3+ regulatory T cells (Tregs), have been implicated in the development of IPF, contradictory results have been reported regarding the contribution of Tregs to fibrosis both in animals and humans. The aim of this study was to investigate whether a specific T cell subset has therapeutic potential in inhibiting bleomycin (BLM)-induced murine pulmonary fibrosis. METHODS: C57BL/6 mice received BLM (100 mg/kg body weight) with osmotic pumps (day 0), and pulmonary fibrosis was induced. Then, splenocytes or Tregs were adoptively transferred via the tail vein. The lungs were removed and subjected to histological and biochemical examinations to study the effects of these cells on pulmonary fibrosis, and blood samples were collected by cardiac punctures to measure relevant cytokines by enzyme-linked immunosorbent assay. Tregs isolated from an interleukin (IL)-10 knock-out mice were used to assess the effect of this mediator. To determine the roles of the spleen in this model, spleen vessels were carefully cauterized and the spleen was removed either on day 0 or 14 after BLM challenge. RESULTS: Splenocytes significantly ameliorated BLM-induced pulmonary fibrosis when they were administered on day 14. This effect was abrogated by depleting Tregs with an anti-CD25 monoclonal antibody. Adoptive transfer of Tregs on day 14 after a BLM challenge significantly attenuated pulmonary fibrosis, and this was accompanied by decreased production of fibroblast growth factor (FGF) 9-positive cells bearing the morphology of alveolar epithelial cells. In addition, BLM-induced plasma IL-10 expression reverted to basal levels after adoptive transfer of Tregs. Moreover, BLM-induced fibrocyte chemoattractant chemokine (CC motif) ligand-2 production was significantly ameliorated by Treg adoptive transfer in lung homogenates, accompanied by reduced accumulation of bone-marrow derived fibrocytes. Genetic ablation of IL-10 abrogated the ameliorating effect of Tregs on pulmonary fibrosis. Finally, splenectomy on day 0 after a BLM challenge significantly ameliorated lung fibrosis, whereas splenectomy on day 14 had no effect. CONCLUSIONS: These findings warrant further investigations to develop a cell-based therapy using Tregs for treating IPF.


Subject(s)
Bleomycin/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/therapy , Spleen/transplantation , T-Lymphocytes, Regulatory/transplantation , Animals , Bleomycin/administration & dosage , Infusion Pumps, Implantable , Lymphocyte Transfusion/methods , Lymphocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Fibrosis/metabolism , Spleen/cytology , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...