Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080502

ABSTRACT

In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.

2.
Curr Opin Plant Biol ; 74: 102377, 2023 08.
Article in English | MEDLINE | ID: mdl-37167921

ABSTRACT

Being able to change cell fate after differentiation highlights the remarkable developmental plasticity of plant cells. Recent studies show that phytohormones, such as auxin and cytokinin, promote cell cycle reactivation, a critical first step to reprogramme mitotically inactive, differentiated cells into organogenic stem cells. Accumulating evidence suggests that wounding provides an additional cue to convert the identity of differentiated cells by promoting the loss of existing cell fate and/or acquisition of new cell fate. Differentiated cells can also alter cell fate without undergoing cell division and in this case, wounding and phytohormones induce master regulators that can directly assign new cell fate.


Subject(s)
Arabidopsis , Plant Growth Regulators , Plant Growth Regulators/metabolism , Arabidopsis/metabolism , Cell Differentiation , Cytokinins/metabolism , Indoleacetic Acids/metabolism
3.
Plant Cell Physiol ; 64(3): 297-304, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36546730

ABSTRACT

Plants can exert remarkable capacity for cell reprogramming even from differentiated cells. This ability allows plants to regenerate tissues/organs and even individuals in nature and in vitro. In recent decades, Arabidopsis research has uncovered molecular mechanisms of plant regeneration; however, our understanding of how plant cells retain both differentiated status and developmental plasticity is still obscure. In this review, we first provide a brief outlook of the representative modes of plant regeneration and key factors revealed by Arabidopsis research. We then re-examine historical tissue culture systems that enable us to investigate the molecular details of cell reprogramming in differentiated cells and discuss the different approaches, specifically highlighting our recent progress in shoot regeneration from the epidermal cell of Torenia fournieri.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Plants/metabolism , Cellular Reprogramming , Gene Expression Regulation, Plant
4.
Plant Cell Physiol ; 62(8): 1335-1354, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34223624

ABSTRACT

Shoot regeneration involves reprogramming of somatic cells and de novo organization of shoot apical meristems (SAMs). In the best-studied model system of shoot regeneration using Arabidopsis, regeneration is mediated by the auxin-responsive pluripotent callus formation from pericycle or pericycle-like tissues according to the lateral root development pathway. In contrast, shoot regeneration can be induced directly from fully differentiated epidermal cells of stem explants of Torenia fournieri (Torenia), without intervening the callus mass formation in culture with cytokinin; yet, its molecular mechanisms remain unaddressed. Here, we characterized this direct shoot regeneration by cytological observation and transcriptome analyses. The results showed that the gene expression profile rapidly changes upon culture to acquire a mixed signature of multiple organs/tissues, possibly associated with epidermal reprogramming. Comparison of transcriptomes between three different callus-inducing cultures (callus induction by auxin, callus induction by wounding and protoplast culture) of Arabidopsis and the Torenia stem culture identified genes upregulated in all the four culture systems as candidates of common factors of cell reprogramming. These initial changes proceeded independently of cytokinin, followed by cytokinin-dependent, transcriptional activations of nucleolar development and cell cycle. Later, SAM regulatory genes became highly expressed, leading to SAM organization in the foci of proliferating cells in the epidermal layer. Our findings revealed three distinct phases with different transcriptomic and regulatory features during direct shoot regeneration from the epidermis in Torenia, which provides a basis for further investigation of shoot regeneration in this unique culture system.


Subject(s)
Cell Differentiation/genetics , Meristem/growth & development , Plant Epidermis/growth & development , Plant Epidermis/genetics , Plant Shoots/growth & development , Scrophulariaceae/growth & development , Scrophulariaceae/genetics , Gene Expression Profiling , Meristem/genetics , Plant Shoots/genetics
5.
Nat Commun ; 11(1): 6152, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262353

ABSTRACT

Eukaryotic cells acquired novel organelles during evolution through mechanisms that remain largely obscure. The existence of the unique oil body compartment is a synapomorphy of liverworts that represents lineage-specific acquisition of this organelle during evolution, although its origin, biogenesis, and physiological function are yet unknown. We find that two paralogous syntaxin-1 homologs in the liverwort Marchantia polymorpha are distinctly targeted to forming cell plates and the oil body, suggesting that these structures share some developmental similarity. Oil body formation is regulated by an ERF/AP2-type transcription factor and loss of the oil body increases M. polymorpha herbivory. These findings highlight a common strategy for the acquisition of organelles with distinct functions in plants, via periodical redirection of the secretory pathway depending on cellular phase transition.


Subject(s)
Lipid Droplets/metabolism , Marchantia/metabolism , Secretory Pathway , Biological Transport , Plant Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...