Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
HLA ; 103(5): e15515, 2024 May.
Article in English | MEDLINE | ID: mdl-38747019

ABSTRACT

Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.


Subject(s)
Alleles , Exome Sequencing , Genetic Predisposition to Disease , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/mortality , Exome Sequencing/methods , Case-Control Studies , Male , Female , Gene Frequency , HLA-DQ beta-Chains/genetics , HLA Antigens/genetics , Genome-Wide Association Study , HLA-DRB1 Chains/genetics , Polymorphism, Single Nucleotide
2.
Cells ; 12(21)2023 10 25.
Article in English | MEDLINE | ID: mdl-37947594

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor during infancy, causing up to 10% of mortality in children; thus, identifying novel early and accurate diagnostic and prognostic biomarkers is mandatory. NB-derived exosomes carry proteins (Exo-prots) reflecting the status of the tumor cell of origin. The purpose of this study was to characterize, for the first time, the Exo-prots specifically expressed in NB patients associated with tumor phenotype and disease stage. We isolated exosomes from plasma specimens of 24 HR-NB patients and 24 low-risk (LR-NB) patients at diagnosis and of 24 age-matched healthy controls (CTRL). Exo-prot expression was measured by liquid chromatography-mass spectrometry. The data are available via ProteomeXchange (PXD042422). The NB patients had a different Exo-prot expression profile compared to the CTRL. The deregulated Exo-prots in the NB specimens acted mainly in the tumor-associated pathways. The HR-NB patients showed a different Exo-prot expression profile compared to the LR-NB patients, with the modulation of proteins involved in cell migration, proliferation and metastasis. NCAM, NCL, LUM and VASP demonstrated a diagnostic value in discriminating the NB patients from the CTRL; meanwhile, MYH9, FN1, CALR, AKAP12 and LTBP1 were able to differentiate between the HR-NB and LR-NB patients with high accuracy. Therefore, Exo-prots contribute to NB tumor development and to the aggressive metastatic NB phenotype.


Subject(s)
Exosomes , Neuroblastoma , Child , Humans , Exosomes/metabolism , Prognosis , Neuroblastoma/genetics , Phenotype , Biomarkers/metabolism
3.
EBioMedicine ; 87: 104395, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36493725

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common solid extracranial paediatric tumour. Genome-wide association studies have driven the discovery of common risk variants, but no large study has investigated the contribution of rare variants to NB susceptibility. Here, we conducted a whole-exome sequencing (WES) of 664 NB cases and 822 controls and used independent validation datasets to identify genes with rare risk variants and involved pathways. METHODS: WES was performed at 50× depth and variants were jointly called in cases and controls. We developed two models to identify mutations with high clinical impact (P/LP model) and to discover less penetrant risk mutations affecting non-canonical cancer pathways (RPV model). We performed a gene-level collapsing test using Firth's logistic regression in 242 selected cancer predisposition genes (CPGs) and a gene-sets burden analysis of biologically-informed pathways. FINDINGS: Twelve percent of patients carried P/LP variants in CPGs and showed a significant enrichment (P = 2.3 × 10-4) compared to controls (6%). We identified P/LP variants in 45 CPGs enriched in homologous recombination (HR) pathway. The most P/LP enriched genes in NB were BRCA1, ALK and RAD51C. Additionally, we found higher RPV burden in gene-sets of neuron differentiation, neural tube development and synapse assembly, and in gene-sets associated with neurodevelopmental disorders (NDD). INTERPRETATION: The high fraction of NB patients with P/LP variants indicates the need of genetic counselling. Furthermore, inherited rare variants predispose to NB development by affecting mechanisms related to HR and neurodevelopmental processes, and demonstrate that NDD genes are altered in NB at the germline level. FUNDING: Associazione Italiana per la Ricerca sul Cancro, Fondazione Italiana per la Lotta al Neuroblastoma, Associazione Oncologia Pediatrica e Neuroblastoma, Regione Campania, Associazione Giulio Adelfio onlus, and Italian Health Ministry.


Subject(s)
Genetic Predisposition to Disease , Neuroblastoma , Humans , Child , Genome-Wide Association Study , Mutation , Neuroblastoma/genetics , Homologous Recombination
4.
Cancers (Basel) ; 14(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36230485

ABSTRACT

High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity. Of note, immunotherapy is a promising therapeutic option in cancer and could be optimized by several strategies. These include the HLA-haploidentical αßT/B-depleted HSCT, and the antibody targeting of novel NB-associated antigens such as B7-H3, and PD1. Other approaches could limit the immunoregulatory role of tumor-derived exosomes and potentiate the low antibody-dependent cell cytotoxicity of CD16 dim/neg NK cells, abundant in the early phase post-transplant. The latter effect could be obtained using multi-specific tools engaging activating NK receptors and tumor antigens, and possibly holding immunostimulatory cytokines in their construct. Finally, treatments also consider the infusion of novel engineered cytokines with scarce side effects, and cell effectors engineered with chimeric antigen receptors (CARs). Our review aims to discuss several promising strategies that could be successfully exploited to potentiate the NK-mediated surveillance of neuroblastoma, particularly in the HSCT setting. Many of these approaches are safe, feasible, and effective at pre-clinical and clinical levels.

6.
Front Oncol ; 12: 845936, 2022.
Article in English | MEDLINE | ID: mdl-35756625

ABSTRACT

Neuroblastoma (NB) is the most common extracranial malignant tumor in children. Although the survival rate of NB has improved over the years, the outcome of NB still remains poor for over 30% of cases. A more accurate risk stratification remains a key point in the study of NB and the availability of novel prognostic biomarkers of "high-risk" at diagnosis could help improving patient stratification and predicting outcome. In this paper we show a biomarker discovery approach applied to the plasma of 172 NB patients. Plasma samples from a first cohort of NB patients and age-matched healthy controls were used for untargeted metabolomics analysis based on high-resolution mass spectrometry (HRMS). Differential expression analysis highlighted a number of metabolites annotated with a high degree of identification. Among them, 3-O-methyldopa (3-O-MD) was validated in a second cohort of NB patients using a targeted metabolite profiling approach and its prognostic potential was also analyzed by survival analysis on patients with 3 years follow-up. High expression of 3-O-MD was associated with worse prognosis in the subset of patients with stage M tumor (log-rank p < 0.05) and, among them, it was confirmed as a prognostic factor able to stratify high-risk patients older than 18 months. 3-O-MD might be thus considered as a novel prognostic biomarker of NB eligible to be included at diagnosis among catecholamine metabolite panels in prospective clinical studies. Further studies are warranted to exploit other potential biomarkers highlighted using our approach.

7.
Cancers (Basel) ; 14(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35406574

ABSTRACT

RNF5, an endoplasmic reticulum (ER) E3 ubiquitin ligase, participates to the ER-associated protein degradation guaranteeing the protein homeostasis. Depending on tumor model tested, RNF5 exerts pro- or anti-tumor activity. The aim of this study was to elucidate the controversial role of RNF5 in neuroblastoma and melanoma, two neuroectodermal tumors of infancy and adulthood, respectively. RNF5 gene levels are evaluated in publicly available datasets reporting the gene expression profile of melanoma and neuroblastoma primary tumors at diagnosis. The therapeutic effect of Analog-1, an RNF5 pharmacological activator, was investigated on in vitro and in vivo neuroblastoma and melanoma models. In both neuroblastoma and melanoma patients the high expression of RNF5 correlated with a better prognostic outcome. Treatment of neuroblastoma and melanoma cell lines with Analog-1 reduced cell viability by impairing the glutamine availability and energy metabolism through inhibition of F1Fo ATP-synthase activity. This latter event led to a marked increase in oxidative stress, which, in turn, caused cell death. Similarly, neuroblastoma- and melanoma-bearing mice treated with Analog-1 showed a significant delay of tumor growth in comparison to those treated with vehicle only. These findings validate RNF5 as an innovative drug target and support the development of Analog-1 in early phase clinical trials for neuroblastoma and melanoma patients.

8.
Cancer Cell Int ; 22(1): 174, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35488346

ABSTRACT

BACKGROUND: FGFR1 regulates cell-cell adhesion and extracellular matrix architecture and acts as oncogene in several cancers. Potential cancer driver mutations of FGFR1 occur in neuroblastoma (NB), a neural crest-derived pediatric tumor arising in sympathetic nervous system, but so far they have not been studied experimentally. We investigated the driver-oncogene role of FGFR1 and the implication of N546K mutation in therapy-resistance in NB cells. METHODS: Public datasets were used to predict the correlation of FGFR1 expression with NB clinical outcomes. Whole genome sequencing data of 19 paired diagnostic and relapse NB samples were used to find somatic mutations. In NB cell lines, silencing by short hairpin RNA and transient overexpression of FGFR1 were performed to evaluate the effect of the identified mutation by cell growth, invasion and cologenicity assays. HEK293, SHSY5Y and SKNBE2 were selected to investigate subcellular wild-type and mutated protein localization. FGFR1 inhibitor (AZD4547), alone or in combination with PI3K inhibitor (GDC0941), was used to rescue malignant phenotypes induced by overexpression of FGFR1 wild-type and mutated protein. RESULTS: High FGFR1 expression correlated with low relapse-free survival in two independent NB gene expression datasets. In addition, we found the somatic mutation N546K, the most recurrent point mutation of FGFR1 in all cancers and already reported in NB, in one out of 19 matched primary and recurrent tumors. Loss of FGFR1 function attenuated invasion and cologenicity in NB cells, whereas FGFR1 overexpression enhanced oncogenicity. The overexpression of FGFR1N546K protein showed a higher nuclear localization compared to wild-type protein and increased cellular invasion and cologenicity. Moreover, N546K mutation caused the failure in response to treatment with FGFR1 inhibitor by activation of ERK, STAT3 and AKT pathways. The combination of FGFR1 and PI3K pathway inhibitors was effective in reducing the invasive and colonigenic ability of cells overexpressing FGFR1 mutated protein. CONCLUSIONS: FGFR1 is an actionable driver oncogene in NB and a promising therapy may consist in targeting FGFR1 mutations in patients with therapy-resistant NB.

9.
Open Biol ; 11(12): 210276, 2021 12.
Article in English | MEDLINE | ID: mdl-34847775

ABSTRACT

Amplification of the proto-oncogene MYCN is a key molecular aberration in high-risk neuroblastoma and predictive of poor outcome in this childhood malignancy. We investigated the role of MYCN in regulating the protein cargo of extracellular vesicles (EVs) secreted by tumour cells that can be internalized by recipient cells with functional consequences. Using a switchable MYCN system coupled to mass spectrometry analysis, we found that MYCN regulates distinct sets of proteins in the EVs secreted by neuroblastoma cells. EVs produced by MYCN-expressing cells or isolated from neuroblastoma patients induced the Warburg effect, proliferation and c-MYC expression in target cells. Mechanistically, we linked the cancer-promoting activity of EVs to the glycolytic kinase pyruvate kinase M2 (PKM2) that was enriched in EVs secreted by MYC-expressing neuroblastoma cells. Importantly, the glycolytic enzymes PKM2 and hexokinase II were detected in the EVs circulating in the bloodstream of neuroblastoma patients, but not in those of non-cancer children. We conclude that MYC-activated cancers might spread oncogenic signals to remote body locations through EVs.


Subject(s)
Carrier Proteins/metabolism , Extracellular Vesicles/enzymology , Hexokinase/metabolism , Membrane Proteins/metabolism , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Proteomics/methods , Thyroid Hormones/metabolism , Carrier Proteins/blood , Cell Line, Tumor , Cell Proliferation , Child , Gene Amplification , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glycolysis , Hexokinase/blood , Humans , Mass Spectrometry , Membrane Proteins/blood , Neuroblastoma/blood , Phosphorylation , Thyroid Hormones/blood , Thyroid Hormone-Binding Proteins
10.
Children (Basel) ; 8(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072462

ABSTRACT

In recent years, much research has been carried out to identify the biological and genetic characteristics of the neuroblastoma (NB) tumor in order to precisely define the prognostic subgroups for improving treatment stratification. This review will describe the major genetic features and the recent scientific advances, focusing on their impact on diagnosis, prognosis, and therapeutic solutions in NB clinical management.

11.
J Clin Oncol ; 39(30): 3377-3390, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34115544

ABSTRACT

PURPOSE: In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. MATERIALS AND METHODS: Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). RESULTS: Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P < .001]), particularly in cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (> 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. CONCLUSION: Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Gene Amplification , Mutation Rate , Neuroblastoma/genetics , Child, Preschool , Clinical Trials, Phase III as Topic , Europe , Female , Follow-Up Studies , Humans , Infant , Male , N-Myc Proto-Oncogene Protein/genetics , Prognosis , Randomized Controlled Trials as Topic , Risk Factors , Survival Rate
12.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915956

ABSTRACT

Neuroblastoma (NB) is an aggressive infancy tumor, leading cause of death among preschool age diseases. Here we focused on characterization of exosomal DNA (exo-DNA) isolated from plasma cell-derived exosomes of neuroblastoma patients, and its potential use for detection of somatic mutations present in the parental tumor cells. Exosomes are small extracellular membrane vesicles secreted by most cells, playing an important role in intercellular communications. Using an enzymatic method, we provided evidence for the presence of double-stranded DNA in the NB exosomes. Moreover, by whole exome sequencing, we demonstrated that NB exo-DNA represents the entire exome and that it carries tumor-specific genetic mutations, including those occurring on known oncogenes and tumor suppressor genes in neuroblastoma (ALK, CHD5, SHANK2, PHOX2B, TERT, FGFR1, and BRAF). NB exo-DNA can be useful to identify variants responsible for acquired resistance, such as mutations of ALK, TP53, and RAS/MAPK genes that appear in relapsed patients. The possibility to isolate and to enrich NB derived exosomes from plasma using surface markers, and the quick and easy extraction of exo-DNA, gives this methodology a translational potential in the clinic. Exo-DNA can be an attractive non-invasive biomarker for NB molecular diagnostic, especially when tissue biopsy cannot be easily available.


Subject(s)
DNA, Neoplasm/metabolism , Exosomes/metabolism , Neuroblastoma/blood , Neuroblastoma/genetics , Carcinogenesis , DNA Copy Number Variations , Humans , Mutation
13.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: mdl-33795387

ABSTRACT

BACKGROUND: High-risk neuroblastomas (HR-NBs) are rare, aggressive pediatric cancers characterized by resistance to therapy and relapse in more than 30% of cases, despite using an aggressive therapeutic protocol including targeting of GD2. The mechanisms responsible for therapy resistance are unclear and might include the presence of GD2neg/low NB variants and/or the expression of immune checkpoint ligands such as B7-H3. METHOD: Here, we describe a multiparametric flow cytometry (MFC) combining the acquisition of 106 nucleated singlets, Syto16pos CD45neg CD56pos cells, and the analysis of GD2 and B7-H3 surface expression. 41 bone marrow (BM) aspirates from 25 patients with NB, at the onset or relapse, are analyzed, comparing results with cytomorphological analysis (CA) and/or immunohistochemistry (IHC). Spike in experiments assesses the sensitivity of MFC. Kaplan-Meier analysis on 498 primary NBs selects novel prognostic markers possibly integrating the MFC panel. RESULTS: No false positive are detected, and MFC shows high sensitivity (0.0005%). Optimized MFC identifies CD45negCD56pos NB cells in 11 out of 12 (91.6%) of BM indicated as infiltrated by CA, 7 of which coexpress high levels of GD2 and B7-H3. MFC detects CD45negCD56posGD2neg/low NB variants expressing high surface levels of B7-H3 in two patients with HR-NB (stage M) diagnosed at 53 and 139 months of age. One of them has a non-MYCN amplified tumor with unusual THpos PHOX2Bneg phenotype, which relapsed 141 months post-diagnosis with BM infiltration and a humerus lesion. All GD2neg/low NB variants are detected in patients at relapse. Kaplan-Meier analysis highlights an interesting dichotomous prognostic value of MML5, ULBPs, PVR, B7-H6, and CD47, ligands involved in NB recognition by the immune system. CONCLUSIONS: Our study validates a sensitive MFC analysis providing information on GD2 and B7-H3 surface expression and allowing fast, specific and sensitive evaluation of BM tumor burden. With other routinely used diagnostic and prognostic tools, MFC can improve diagnosis, prognosis, orienting novel personalized treatments in patients with GD2low/neg NB, who might benefit from innovative therapies combining B7-H3 targeting.


Subject(s)
B7 Antigens/analysis , Biomarkers, Tumor/analysis , Flow Cytometry , Gangliosides/analysis , Neuroblastoma/immunology , Adolescent , Cell Line, Tumor , Child , Child, Preschool , Humans , Infant , Male , Neuroblastoma/diagnosis , Neuroblastoma/mortality , Neuroblastoma/therapy , Predictive Value of Tests , Progression-Free Survival , Reproducibility of Results , Time Factors
14.
Int J Mol Sci ; 23(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35008754

ABSTRACT

Glycogen storage disease type Ia (GSDIa) is an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α). Affected individuals develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma and kidney failure. The purpose of this study was to identify potential biomarkers of the evolution of the disease in GSDIa patients. To this end, we analyzed the expression of exosomal microRNAs (Exo-miRs) in the plasma exosomes of 45 patients aged 6 to 63 years. Plasma from age-matched normal individuals were used as controls. We found that the altered expression of several Exo-miRs correlates with the pathologic state of the patients and might help to monitor the progression of the disease and the development of late GSDIa-associated complications.


Subject(s)
Exosomes/genetics , Glycogen Storage Disease Type I/genetics , Kidney Diseases/genetics , Liver/injuries , Liver/metabolism , MicroRNAs/genetics , Adolescent , Adult , Age Factors , Animals , Biomarkers/metabolism , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Exosomes/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Glucose-6-Phosphatase/metabolism , Glycogen Storage Disease Type I/blood , Glycogen Storage Disease Type I/pathology , Humans , Kidney Diseases/blood , Kidney Diseases/pathology , Male , Mice , MicroRNAs/metabolism , Middle Aged , Time Factors , Young Adult
15.
Cancers (Basel) ; 12(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825087

ABSTRACT

The biological and clinical heterogeneity of neuroblastoma (NB) demands novel biomarkers and therapeutic targets in order to drive the most appropriate treatment for each patient. Hypoxia is a condition of low-oxygen tension occurring in poorly vascularized tumor tissues. In this study, we aimed to assess the role of hypoxia in the pathogenesis of NB and at developing a new clinically relevant hypoxia-based predictor of outcome. We analyzed the gene expression profiles of 1882 untreated NB primary tumors collected at diagnosis and belonging to four existing data sets. Analyses took advantage of machine learning methods. We identified NB-hop, a seven-gene hypoxia biomarker, as a predictor of NB patient prognosis, which is able to discriminate between two populations of patients with unfavorable or favorable outcome on a molecular basis. NB-hop retained its prognostic value in a multivariate model adjusted for established risk factors and was able to additionally stratify clinically relevant groups of patients. Tumors with an unfavorable NB-hop expression showed a significant association with telomerase activation and a hypoxic, immunosuppressive, poorly differentiated, and apoptosis-resistant tumor microenvironment. NB-hop defines a new population of NB patients with hypoxic tumors and unfavorable prognosis and it represents a critical factor for the stratification and treatment of NB patients.

16.
Dis Model Mech ; 13(9)2020 09 18.
Article in English | MEDLINE | ID: mdl-32620541

ABSTRACT

Most patients affected by glycogen storage disease type 1a (GSD1a), an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α), develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma. The purpose of this study was to identify potential biomarkers of the pathophysiology of the GSD1a-affected liver. To this end, we used the plasma exosomes of a murine model of GSD1a, the LS-G6pc-/- mouse, to uncover the modulation in microRNA expression associated with the disease. The microRNAs differentially expressed between LS-G6pc-/- and wild-type mice, LS-G6pc-/- mice with hepatocellular adenoma and LS-G6pc-/- mice without adenoma, and LS-G6pc-/- mice with amyloidosis and LS-G6pc-/- mice without amyloidosis were identified. Pathway analysis demonstrated that the target genes of the differentially expressed microRNA were significantly enriched for the insulin signaling pathway, glucose and lipid metabolism, Wnt/ß-catenin, telomere maintenance and hepatocellular carcinoma, and chemokine and immune regulation signaling pathways. Although some microRNAs were common to the different pathologic conditions, others were unique to the cancerous or inflammatory status of the animals. Therefore, the altered expression of several microRNAs is correlated with various pathologic liver states and might help to distinguish them during the progression of the disease and the development of late GSD1a-associated complications.


Subject(s)
Circulating MicroRNA/genetics , Exosomes/genetics , Glycogen Storage Disease Type I/blood , Glycogen Storage Disease Type I/genetics , Inflammation/genetics , Liver/injuries , Amyloidosis/genetics , Animals , Biomarkers/blood , Cell Hypoxia , Chemokines/metabolism , Circulating MicroRNA/metabolism , Disease Models, Animal , Gene Expression Regulation , Glucose-6-Phosphatase/metabolism , Inflammation/blood , Inflammation/pathology , Insulin/metabolism , Mice , Models, Biological , Organ Specificity , Reproducibility of Results , Time Factors , Wnt Signaling Pathway
17.
NPJ Genom Med ; 5: 18, 2020.
Article in English | MEDLINE | ID: mdl-32337068

ABSTRACT

Genomic aberrations of neuroblastoma occurring in late childhood and adolescence are still understudied. Publicly available DNA copy number profiles of 556 tumors (discovery set) and of 208 tumors obtained by array-CGH assay (validation set) were used to test if 19p loss is significantly over-represented in children and adolescents with neuroblastoma. The 19p loss occurrence was separately tested within different age groups in the discovery and validation set and the resulting P values were combined by meta-analysis and corrected by Bonferroni's method. In both sets, 19p loss was associated with older age at diagnosis. Particularly, the lowest age group significantly associated with 19p loss (discovery set: 20%; validation set: 35%) was 6 years. The 19p loss correlated with inferior overall survival in patients over 6 years of age. Relevant tumor suppressor genes (KEAP1, DNM2, SMARCA4, SLC44A2 and CDKN2D) and microRNAs (miR-181c, miR-27a, and mirR-199a-1) are located in the genomic region involved in 19p loss. Downregulation of DNM2, SLC44A2 and CDKN2D was associated with poor patient outcome and older age. Among the recurrent NB chromosomal aberrations, only 1q gain was enriched in patients older than 6, and its presence was mutually exclusive with respect to 19p loss. Our data demonstrate that 19p loss is a genomic biomarker of NB diagnosed in older children that can predict clinical outcome.

18.
Cancer Biol Ther ; 21(5): 391-399, 2020 05 03.
Article in English | MEDLINE | ID: mdl-31959052

ABSTRACT

Patients with high-risk neuroblastoma (HR-NB) often initially respond to therapy, but afterward they become resistant and disease recurred. Unfortunately, it does not exist one or more specific chromosome defects associated with relapse or refractory NB. Recently, genomic evidence from primary tumors indicated that the distal region of chromosome 6q is loss in HR-NB patients with fatal outcome. We identified a minimal common region of loss of chromosome 6q27 spanning an area of 2.09 Mb by high-resolution DNA copy number data of a small cohort of HR-NB samples carrying 6q loss. This region of loss harbored five genes T, SFT2D1, RPS6KA2, FGFR1OP, and UNC93A. We found that low SFT2D1, RPS6KA2, and FGFR1OP gene expression predicted poor outcome in HR-NB patients using public R2 Platform. Further functional studies will be essential to confirm the presumed tumor suppressor gene(s) located within 6q27 region. These results suggest that SFT2D1, RPS6KA2, and FGFR1OP genes may be responsible for poor prognosis of HR-NB tumors with 6q27 loss, and their haploinsufficiency may be crucial in accelerating tumor progression.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Human, Pair 6/genetics , Comparative Genomic Hybridization/methods , Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Loss of Heterozygosity , Neuroblastoma/mortality , Adolescent , Adult , Aged , Child , Cohort Studies , Databases, Genetic/statistics & numerical data , Humans , Middle Aged , Neuroblastoma/genetics , Neuroblastoma/pathology , Survival Rate , Young Adult
19.
J Transl Med ; 18(1): 21, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924244

ABSTRACT

BACKGROUND: Tetralogy of Fallot (ToF) and Atrial Septal Defects (ASD) are the most common types of congenital heart diseases and a major cause of childhood morbidity and mortality. Cardiopulmonary bypass (CPB) is used during corrective cardiac surgery to support circulation and heart stabilization. However, this procedure triggers systemic inflammatory and stress response and consequent increased risk of postoperative complications. The aim of this study was to define the molecular bases of ToF and ASD pathogenesis and response to CPB and identify new potential biomarkers. METHODS: Comparative transcriptome analysis of right atrium specimens collected from 10 ToF and 10 ASD patients was conducted before (Pre-CPB) and after (Post-CPB) corrective surgery. Total RNA isolated from each sample was individually hybridized on Affymetrix HG-U133 Plus Array Strips containing 38,500 unique human genes. Differences in the gene expression profiles and functional enrichment/network analyses were assessed using bioinformatic tools. qRT-PCR analysis was used to validate gene modulation. RESULTS: Pre-CPB samples showed significant differential expression of a total of 72 genes, 28 of which were overexpressed in ToF and 44 in ASD. According to Gene Ontology annotation, the mostly enriched biological processes were represented by matrix organization and cell adhesion in ToF and by muscle development and contractility in ASD specimens. GSEA highlighted the specific enrichment of hypoxia gene sets in ToF samples, pointing to a role for hypoxia in disease pathogenesis. The post-CPB myocardium exhibited significant alterations in the expression profile of genes related to transcription regulation, growth/apoptosis, inflammation, adhesion/matrix organization, and oxidative stress. Among them, only 70 were common to the two disease groups, whereas 110 and 24 were unique in ToF and ASD, respectively. Multiple functional interactions among differentially expressed gene products were predicted by network analysis. Interestingly, gene expression changes in ASD samples followed a consensus hypoxia profile. CONCLUSION: Our results provide a comprehensive view of gene reprogramming in right atrium tissues of ToF and ASD patients before and after CPB, defining specific molecular pathways underlying disease pathophysiology and myocardium response to CPB. These findings have potential translational value because they identify new candidate prognostic markers and targets for tailored cardioprotective post-surgical therapies.


Subject(s)
Heart Septal Defects, Atrial , Myocardium , Tetralogy of Fallot , Cardiopulmonary Bypass , Child , Gene Expression Profiling , Heart Septal Defects, Atrial/genetics , Humans , Myocardium/metabolism
20.
Cancer Res ; 80(3): 382-393, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31784426

ABSTRACT

The contribution of coding mutations to oncogenesis has been largely clarified, whereas little is known about somatic mutations in noncoding DNA and their role in driving tumors remains controversial. Here, we used an alternative approach to interpret the functional significance of noncoding somatic mutations in promoting tumorigenesis. Noncoding somatic mutations of 151 neuroblastomas were integrated with ENCODE data to locate somatic mutations in regulatory elements specifically active in neuroblastoma cells, nonspecifically active in neuroblastoma cells, and nonactive. Within these types of elements, transcription factors (TF) were identified whose binding sites were enriched or depleted in mutations. For these TFs, a gene expression signature was built to assess their implication in neuroblastoma. DNA- and RNA-sequencing data were integrated to assess the effects of those mutations on mRNA levels. The pathogenicity of mutations was significantly higher in transcription factor binding site (TFBS) of regulatory elements specifically active in neuroblastoma cells, as compared with the others. Within these elements, there were 18 over-represented TFs involved mainly in cell-cycle phase transitions and 15 under-represented TFs primarily regulating cell differentiation. A gene expression signature based on over-represented TFs correlated with poor survival and unfavorable prognostic markers. Moreover, recurrent mutations in TFBS of over-represented TFs such as EZH2 affected MCF2L and ADP-ribosylhydrolase like 1 expression, among the others. We propose a novel approach to study the involvement of regulatory variants in neuroblastoma that could be extended to other cancers and provide further evidence that alterations of gene expression may have relevant effects in neuroblastoma development. SIGNIFICANCE: These findings propose a novel approach to study regulatory variants in neuroblastoma and suggest that noncoding somatic mutations have relevant implications in neuroblastoma development.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinogenesis/pathology , DNA, Neoplasm/metabolism , Gene Expression Regulation, Neoplastic , Mutation , Neuroblastoma/pathology , Transcription Factors/metabolism , Binding Sites , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , DNA, Neoplasm/genetics , Humans , Neuroblastoma/genetics , Neuroblastoma/metabolism , Protein Binding , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...