Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 234(1): 50-63, 2022 04.
Article in English | MEDLINE | ID: mdl-34981534

ABSTRACT

Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.


Subject(s)
Droughts , Trees , Ecosystem , Forests , Plant Leaves , Trees/physiology , Tropical Climate , Water , Xylem/physiology
2.
Tree Physiol ; 41(10): 1893-1905, 2021 10 04.
Article in English | MEDLINE | ID: mdl-33823053

ABSTRACT

Tracking wood formation in semiarid regions during the seasonal march of precipitation extremes has two important applications. It can provide (i) insight into the adaptive capacities of trees to drought and (ii) a basis for a richer interpretation of tree-ring data, assisting in a deeper understanding of past and current climate. In the southwestern USA, the anatomical signature of seasonally bimodal precipitation is the 'false ring'-a band of latewood-like cells in the earlywood. These occur when a particularly deep drought during the early growing season ends abruptly with timely, mid-growing season monsoonal rains. Such conditions presented in southern Arizona in 2014, enabling us to explore false-ring formation in ponderosa pine (Pinus ponderosa Lawson and C. Lawson) and Douglas-fir (Pseudotsuga menziesii Mirb. Franco) in mixed-conifer forest at 2573 m above sea level. We ask: what were the cell-by-cell timings and durations in the phases of wood cell development in 2014? How do these seasonal patterns relate to strongly fluctuating environmental conditions during the growing season? We took weekly microcores from March through November from six ponderosa pine and seven Douglas-fir trees at a well-instrumented flux tower site. Thin sections were prepared, and we counted cells in cambial, expansion, cell wall thickening and mature phases. For ponderosa pine trees forming a false ring, the first impact of intensifying seasonal drought was seen in the enlarging phase and then, almost a month later, in cambial activity. In this species, recovery from drought was associated with recovery first in cambial activity, followed by cell enlargement. This timing raised the possibility that cell division may be affected by atmospheric moisture increases before soil recharge. In both species, the last false-ring cells matured during the summer rainy season. Bimodal cambial activity coincident with moisture availability was observed in both species, whether or not they formed a false ring. This deeper knowledge of the precise timing of both developmental and environmental events should help define mechanistic connections among these factors in creating bimodal growth patterns.


Subject(s)
Pinus ponderosa , Pseudotsuga , Arizona , Climate , Pinus ponderosa/growth & development , Pseudotsuga/growth & development , Rain , Trees/growth & development
3.
Plant Cell Environ ; 41(12): 2758-2772, 2018 12.
Article in English | MEDLINE | ID: mdl-29995977

ABSTRACT

We developed novel approaches for using the isotope composition of tree-ring subdivisions to study seasonal dynamics in tree-climate relations. Across a 30-year time series, the δ13 C and δ18 O values of the earlywood (EW) cellulose in the annual rings of Pinus ponderosa reflected relatively high intrinsic water-use efficiencies and high evaporative fractionation of 18 O/16 O, respectively, compared with the false latewood (FLW), summerwood (SW), and latewood (LW) subdivisions. This result is counterintuitive, given the spring origins of the EW source water and midsummer origins of the FLW, SW, and LW. With the use of the Craig-Gordon (CG), isotope-climate model revealed that the isotope ratios in all of the ring subdivision are explained by the existence of seasonal lags, lasting several weeks, between the initial formation of tracheids and the production of cellulosic secondary cell walls during maturation. In contrast to some past studies, modification of the CG model according to conventional methods to account for mixing of needle water between fractionated and nonfractionated sources did not improve the accuracy of predictions. Our results reveal new potential in the use of tree-ring isotopes to reconstruct past intra-annual tree-climate relations if lags in cambial phenology are reconciled with isotope ratio observations and included in theoretical treatments.


Subject(s)
Cambium/chemistry , Carbon Isotopes/analysis , Oxygen Isotopes/analysis , Cambium/growth & development , Carbon Isotopes/metabolism , Climate , Oxygen Isotopes/metabolism , Pinus ponderosa/chemistry , Pinus ponderosa/growth & development , Seasons , Trees/chemistry , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...