Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Exp Neurol ; 376: 114772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599366

ABSTRACT

Animals on Earth need to hold postures and execute a series of movements under gravity and atmospheric pressure. VAChT-Cre is a transgenic Cre driver mouse line that expresses Cre recombinase selectively in motor neurons of S-type (slow-twitch fatigue-resistant) and FR-type (fast-twitch fatigue-resistant). Sequential motor unit recruitment is a fundamental principle for fine and smooth locomotion; smaller-diameter motor neurons (S-type, FR-type) first contract low-intensity oxidative type I and type IIa muscle fibers, and thereafter larger-diameter motor neurons (FInt-type, FF-type) are recruited to contract high-intensity glycolytic type IIx and type IIb muscle fibers. To selectively eliminate S- and FR-type motor neurons, VAChT-Cre mice were crossbred with NSE-DTA mice in which the cytotoxic diphtheria toxin A fragment (DTA) was expressed in Cre-expressing neurons. The VAChT-Cre;NSE-DTA mice were born normally but progressively manifested various characteristics, including body weight loss, kyphosis, kinetic and postural tremor, and muscular atrophy. The progressive kinetic and postural tremor was remarkable from around 20 weeks of age and aggravated. Muscular atrophy was apparent in slow muscles, but not in fast muscles. The increase in motor unit number estimation was detected by electromyography, reflecting compensatory re-innervation by remaining FInt- and FF-type motor neurons to the orphaned slow muscle fibers. The muscle fibers gradually manifested fast/slow hybrid phenotypes, and the remaining FInt-and FF-type motor neurons gradually disappeared. These results suggest selective ablation of S- and FR-type motor neurons induces progressive muscle fiber-type transition, exhaustion of remaining FInt- and FF-type motor neurons, and late-onset kinetic and postural tremor in mice.


Subject(s)
Mice, Transgenic , Motor Neurons , Tremor , Animals , Motor Neurons/pathology , Motor Neurons/physiology , Mice , Tremor/genetics , Tremor/physiopathology , Muscle Fibers, Slow-Twitch/pathology , Muscle Fibers, Fast-Twitch/pathology , Muscular Diseases/physiopathology , Muscular Diseases/pathology , Muscular Diseases/etiology , Muscle Fatigue/physiology , Posture/physiology , Animals, Newborn , Disease Models, Animal
2.
Front Cell Neurosci ; 17: 1291673, 2023.
Article in English | MEDLINE | ID: mdl-38077951

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease in which non-cell-autonomous processes have been proposed as its cause. Non-neuronal cells that constitute the environment around motor neurons are known to mediate the pathogenesis of ALS. Perivascular macrophages (PVM) are immune cells that reside between the blood vessels of the central nervous system and the brain parenchyma; PVM are components of the neurovascular unit and regulate the integrity of the blood-spinal cord barrier (BSCB). However, it is not known whether regulation of BSCB function by PVM is involved in the pathogenesis of ALS. Here, we used SOD1G93A mice to investigate whether PVM is involved in the pathogenesis of ALS. Immunostaining revealed that the number of PVM was increased during the disease progression of ALS in the spinal cord. We also found that both anti-inflammatory Lyve1+ PVM and pro-inflammatory MHCII+ PVM subtypes were increased in SOD1G93A mice, and that subtype heterogeneity was shifted toward MHCII+ PVM compared to wild-type (WT) mice. Then we depleted PVM selectively and continuously in SOD1G93A mice by repeated injection of clodronate liposomes into the cerebrospinal fluid and assessed motor neuron number, neurological score, and survival. Results showed that PVM depletion prevented the loss of motoneurons, slowed disease progression, and prolonged survival. Further histological analysis showed that PVM depletion prevents BSCB collapse by ameliorating the reduction of extracellular matrix proteins necessary for the maintenance of barrier function. These results indicate that PVM are involved in the pathogenesis of ALS, as PVM degrades the extracellular matrix and reduces BSCB function, which may affect motor neuron loss and disease progression. Targeting PVM interventions may represent a novel ALS therapeutic strategy.

3.
Front Cell Neurosci ; 17: 1308972, 2023.
Article in English | MEDLINE | ID: mdl-38026700

ABSTRACT

Microglia are resident innate immune cells in the central nervous system (CNS) and play important roles in the development of CNS homeostasis. Excessive activation and neurotoxicity of microglia are observed in several CNS disorders, but the mechanisms regulating their activation remain unclear. Immune checkpoint molecules are expressed on activated immune cells and regulate their activation in peripheral immunity. However, the expression mechanism of immune checkpoint molecules in activated microglia is still unknown. Here, we analyzed the expression of immune checkpoint molecules in activated microglia using the mouse microglial cell line BV2 and primary cultured microglia. The expression of lymphocyte activation gene-3 (LAG-3), a type of immune checkpoint molecule, was increased in microglia activated by IFN-γ. IFN-γ-induced LAG-3 expression in microglia was suppressed by transfection of siRNA targeting STAT1. LAG-3 has two forms, membrane and soluble, and both forms were upregulated in microglia activated by IFN-γ. The production of soluble LAG-3 was suppressed by treatment with inhibitors of metalloproteinases such as ADAM10 and ADAM17. IFN-γ administration into cisterna magna of mice increased LAG-3 expression in spinal microglia. Furthermore, LAG-3 knockdown in microglia promoted nitric oxide production by IFN-γ. Our results demonstrate that LAG-3 expression in microglia is induced by the IFN-γ-STAT1 pathway and soluble LAG-3 production is regulated via cleavage of membranous LAG-3 by metalloproteinases including ADAM10 and ADAM17.

4.
Nihon Yakurigaku Zasshi ; 152(2): 64-69, 2018.
Article in Japanese | MEDLINE | ID: mdl-30101862

ABSTRACT

Different and selective vulnerability among motor neuron subtypes are a fundamental, but unexplained, feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) motor neurons are the most vulnerable, and fast fatigue-resistant/slow (FR/S) motor neurons are relatively resistant. We identified that osteopontin (OPN) can serve as a marker of FR/S motor neurons, whereas matrix metalloproteinase-9 (MMP9) is expressed by FF motor neurons in mice. In SOD1G93A ALS model mice, as the disease progressed, OPN was secreted and accumulated as granular deposits in the extracellular matrix. We also detected OPN/MMP9 co-expressed motor neurons around the disease onset. These double positive motor neurons showed the expression of αvß3 integrin (OPN receptor) and up-regulation of ER stress markers. We discovered that the double positive motor neurons are remodeled FR/S motor neurons, which compensated for FF motor neuron degeneration (the first wave of degeneration). Genetic ablation of OPN delayed the onset of disease, but later accelerated disease progression. This reflects two modes of OPN involvement in the pathogenesis of ALS: cell-autonomous and non-cell-autonomous effects on motor neuron vulnerability. Our study suggests that OPN expressed in FR/S motor neurons is involved in the second wave of motor neuron degeneration in ALS, and an OPN-αvß3 integrin-MMP9 axis could be a potentially useful therapeutic target for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Disease Models, Animal , Disease Progression , Mice , Mice, Transgenic , Motor Neurons , Spinal Cord , Superoxide Dismutase
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2119-2130, 2018 06.
Article in English | MEDLINE | ID: mdl-29551730

ABSTRACT

Dominant mutations in the gene encoding copper and zinc-binding superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS). Abnormal accumulation of misfolded SOD1 proteins in spinal motoneurons is a major pathological hallmark in SOD1-related ALS. Dissociation of copper and/or zinc ions from SOD1 has been shown to trigger the protein aggregation/oligomerization in vitro, but the pathological contribution of such metal dissociation to the SOD1 misfolding still remains obscure. Here, we tested the relevance of the metal-deficient SOD1 in the misfolding in vivo by developing a novel antibody (anti-apoSOD), which exclusively recognized mutant SOD1 deficient in metal ions at its copper-binding site. Notably, anti-apoSOD-reactive species were detected specifically in the spinal cords of the ALS model mice only at their early pre-symptomatic stages but not at the end stage of the disease. The cerebrospinal fluid as well as the spinal cord homogenate of one SOD1-ALS patient also contained the anti-apoSOD-reactive species. Our results thus suggest that metal-deficiency in mutant SOD1 at its copper-binding site is one of the earliest pathological features in SOD1-ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Copper/metabolism , Protein Aggregation, Pathological/diagnosis , Superoxide Dismutase-1/metabolism , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/pathology , Animals , Antibodies/immunology , Asymptomatic Diseases , Binding Sites/genetics , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Motor Neurons/pathology , Mutation , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/immunology , Protein Aggregation, Pathological/pathology , Protein Binding/genetics , Protein Folding , Sensitivity and Specificity , Spinal Cord/cytology , Spinal Cord/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/immunology , Zinc/metabolism
6.
Mol Neurodegener ; 12(1): 2, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28057013

ABSTRACT

BACKGROUND: Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS) with accumulation of misfolded SOD1 proteins as intracellular inclusions in spinal motor neurons. Oligomerization of SOD1 via abnormal disulfide crosslinks has been proposed as one of the misfolding pathways occurring in mutant SOD1; however, the pathological relevance of such oligomerization in the SOD1-ALS cases still remains obscure. METHODS: We prepared antibodies exclusively recognizing the SOD1 oligomers cross-linked via disulfide bonds in vitro. By using those antibodies, immunohistochemical examination and ELISA were mainly performed on the tissue samples of transgenic mice expressing mutant SOD1 proteins and also of human SOD1-ALS cases. RESULTS: We showed the recognition specificity of our antibodies exclusively toward the disulfide-crosslinked SOD1 oligomers by ELISA using various forms of purified SOD1 proteins in conformationally distinct states in vitro. Furthermore, the epitope of those antibodies was buried and inaccessible in the natively folded structure of SOD1. The antibodies were then found to specifically detect the pathological SOD1 species in the spinal motor neurons of the SOD1-ALS patients as well as the transgenic model mice. CONCLUSIONS: Our findings here suggest that the SOD1 oligomerization through the disulfide-crosslinking associates with exposure of the SOD1 structural interior and is a pathological process occurring in the SOD1-ALS cases.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Superoxide Dismutase-1/chemistry , Superoxide Dismutase-1/metabolism , Animals , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Proteostasis Deficiencies/enzymology
7.
Sci Rep ; 6: 27354, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27264390

ABSTRACT

Differential vulnerability among motor neuron (MN) subtypes is a fundamental feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) MNs are more vulnerable than fast fatigue-resistant (FR) or slow (S) MNs. The reason for this selective vulnerability remains enigmatic. We report here that the extracellular matrix (ECM) protein osteopontin (OPN) is selectively expressed by FR and S MNs and ALS-resistant motor pools, whereas matrix metalloproteinase-9 (MMP-9) is selectively expressed by FF MNs. OPN is secreted and accumulated as extracellular granules in ECM in three ALS mouse models and a human ALS patient. In SOD1(G93A) mice, OPN/MMP-9 double positivity marks remodeled FR and S MNs destined to compensate for lost FF MNs before ultimately dying. Genetic ablation of OPN in SOD1(G93A) mice delayed disease onset but then accelerated disease progression. OPN induced MMP-9 up-regulation via αvß3 integrin in ChAT-expressing Neuro2a cells, and also induced CD44-mediated astrocyte migration and microglial phagocytosis in a non-cell-autonomous manner. Our results demonstrate that OPN expressed by FR/S MNs is involved in the second-wave neurodegeneration by up-regulating MMP-9 through αvß3 integrin in the mouse model of ALS. The differences in OPN/MMP-9 expression profiles in MN subsets partially explain the selective MN vulnerability in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Integrin alphaVbeta3/metabolism , Matrix Metalloproteinase 9/metabolism , Motor Neurons/physiology , Osteopontin/metabolism , Animals , Disease Models, Animal , Humans , Mice
8.
Proc Natl Acad Sci U S A ; 111(47): 16772-7, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25385620

ABSTRACT

Interindividual differences in hepatic metabolism, which are mainly due to genetic polymorphism in its gene, have a large influence on individual drug efficacy and adverse reaction. Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells have the potential to predict interindividual differences in drug metabolism capacity and drug response. However, it remains uncertain whether human iPSC-derived HLCs can reproduce the interindividual difference in hepatic metabolism and drug response. We found that cytochrome P450 (CYP) metabolism capacity and drug responsiveness of the primary human hepatocytes (PHH)-iPS-HLCs were highly correlated with those of PHHs, suggesting that the PHH-iPS-HLCs retained donor-specific CYP metabolism capacity and drug responsiveness. We also demonstrated that the interindividual differences, which are due to the diversity of individual SNPs in the CYP gene, could also be reproduced in PHH-iPS-HLCs. We succeeded in establishing, to our knowledge, the first PHH-iPS-HLC panel that reflects the interindividual differences of hepatic drug-metabolizing capacity and drug responsiveness.


Subject(s)
Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Liver Function Tests , Liver/drug effects , Cell Differentiation , Cytochrome P-450 Enzyme System/metabolism , Flow Cytometry , Hepatocytes/enzymology , Humans , Liver/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...