Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Aerosol Med ; 14(2): 185-95, 2001.
Article in English | MEDLINE | ID: mdl-11681650

ABSTRACT

Bioavailability of an aerosolized anti-inflammatory protein, soluble interleukin-4 receptor (IL-4R), was measured in patients with asthma using two different aerosol delivery systems, a prototype aerosol delivery system (AERx tethered model, Aradigm, Hayward, CA) and PARI LC STAR nebulizer (Pari, Richmond, VA). Regional distribution of the drug in the respiratory tract obtained by planar imaging using gamma camera scintigraphy was utilized to explain the differences in bioavailability. The drug, an experimental protein being developed for asthma, was mixed with radiolabel 99mTechnetium diethylene triaminepentaacetic acid (99mTc-DTPA). Aerosols were characterized in vitro using cascade impaction (mass median aerodynamic diameter [MMAD] and geometric standard deviation [GSD]); the AERx MMAD 2.0 microm (GSD 1.35), the PARI 3.5 microm (GSD 2.5). Four patients with asthma requiring maintenance aerosolized steroids were studied. First, regional volume was determined utilizing equilibrium 133Xe scanning. Then, after a brief period of instruction, patients inhaled four breaths of protein using AERx (0.45 mg in total) followed 1 week later by inhalation via PARI (3.0 mg nebulized until dry). Each deposition image was followed by a measurement of regional perfusion using injected 99mTc albumin macroaggregates. Deposition of 99mTc-DTPA in the subjects was determined by mass balance. Regional analysis was performed using computerized regions of interest. The regional distribution of deposited drug was normalized for regional volume and perfusion. Following each single inhalation, serial blood samples were drawn over a 7-day period to determine area under the curve (AUC) of protein concentration in the blood. Median AUC(AERx)/AUC(PARI) was 7.66/1, based on the amount of drug placed in each device, indicating that AERx was 7.66 times more efficient than PARI. When normalized for total lung deposition (AUC per mg deposited) the ratio decreased to 2.44, indicating that efficiencies of the drug delivery system and deposition were major factors. When normalized for sC/P and (pU/L)xe ratios (central to peripheral and upper to lower ratios are parameters of regional distribution of deposited particles and regional per- fusion ['p']), AUC(AER)x/AUC(PARI) further decreased to 1.35, demonstrating that peripheral sites of deposition with the AERx affected the final blood concentration of the drug. We conclude that inhaled bioavailability of aerosolized protein, as expressed by AUC, is a quantifiable function of lung dose and regional deposition as defined by planar scintigraphy.


Subject(s)
Aerosols/administration & dosage , Aerosols/pharmacokinetics , Asthma/diagnostic imaging , Asthma/drug therapy , Lung/drug effects , Nebulizers and Vaporizers/standards , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/pharmacokinetics , Receptors, Interleukin-4/administration & dosage , Technetium Tc 99m Pentetate/administration & dosage , Technetium Tc 99m Pentetate/pharmacokinetics , Administration, Inhalation , Asthma/blood , Asthma/physiopathology , Biological Availability , Drug Monitoring , Female , Forced Expiratory Volume/drug effects , Humans , Male , Radionuclide Imaging , Radiopharmaceuticals/blood , Receptors, Interleukin-4/blood , Spirometry , Technetium Tc 99m Pentetate/blood , Tissue Distribution
2.
Anesthesiology ; 93(3): 619-28, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10969293

ABSTRACT

BACKGROUND: A new pulmonary drug delivery system produces aerosols from disposable packets of medication. This study compared the pharmacokinetics and pharmacodynamics of morphine delivered by an AERx prototype with intravenous morphine. METHODS: Fifteen healthy volunteers were enrolled. Two subjects were administered four inhalations of 2.2 mg morphine each at 1-min intervals or 4.4 mg over 3 min by intravenous infusion. Thirteen subjects were given twice the above doses, i.e., eight inhalations or 8.8 mg intravenously over 7 min. Arterial blood sampling was performed every minute during administration and at 2, 5, 7, 10, 15, 20, 45, 60, 90, 120, 150, 180, and 240 min after administration. The effect of morphine was assessed by measuring pupil diameter and ventilatory response to a hypercapnic challenge. Pharmacokinetic and pharmacodynamic analyses were performed simultaneously using mixed-effect models. RESULTS: The pharmacokinetic data after intravenous administration were described by a three-exponent decay model preceded by a lag time. The pharmacokinetic model for administration by inhalation consisted of the three-exponent intravenous pharmacokinetic model preceded by a two-exponent absorption model. The authors found that, with administration by inhalation, the total bioavailability was 59%, of which 43% was absorbed almost instantaneously and 57% was absorbed with a half-life of 18 min. The median times to the half-maximal miotic effects of morphine were 10 and 5.5 min after inhalation and intravenous administration, respectively (P < 0.01). The pharmacodynamic parameter ke0 was approximately 0.003 min-1. CONCLUSIONS: The onset and duration of the effects of morphine are similar after intravenous administration or inhalation via this new pulmonary drug delivery system. Morphine bioavailability after such administration is 59% of the dose loaded into the dosage form.


Subject(s)
Analgesics, Opioid/pharmacokinetics , Morphine/pharmacokinetics , Administration, Inhalation , Adult , Female , Humans , Injections, Intravenous , Male , Middle Aged , Morphine/administration & dosage , Morphine/pharmacology , Morphine Derivatives/pharmacokinetics , Pupil/drug effects , Respiration/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...